Twitter can Reveal our Shared Mood

In the largest study of its kind, researchers from the University of Bristol have analysed mood indicators in text from 800 million anonymous messages posted on Twitter. These tweets were found to reflect strong patterns of positive and negative moods over the 24-hour day.

Circadian rhythms, widely referred to as the 'body clock', allows people's bodies to predict their needs over the dark and light periods of the day. Most of this circadian activity is regulated by a small region in the hypothalamus of the brain called the suprachiasmatic nucleus, which is particularly sensitive to light changes at dawn and dusk, and sends signals through nerves and hormones to every tissue in the body.

The research team looked at the use of words relating to positive and negative emotions, sadness, anger, and fatigue in Twitter over the course of four years. The public expressions of affect and fatigue were linked to the time they appeared on the social platform to reveal changes within the 24-hours. Whilst previous studies have shown a circadian variation for positive and negative emotions the current study was able to differentiate specific aspects of anger, sadness, and fatigue.

Lead author and machine learning researcher Dr Fabon Dzogang, in collaboration with neuroscientist and current British Neuroscience Association President, Professor Stafford Lightman from Bristol Medical School: THS, and Nello Cristianini, Professor of Artificial Intelligence from the Department of Engineering Mathematics, have found distinct patterns of positive emotions and sadness between the weekends and the weekdays, and evidence of variation of these patterns across the seasons.

Dr Fabon Dzogang, research associate in the Department of Computer Science, said: "Our research revealed strong circadian patterns for both positive and negative moods. The profiles of anger and fatigue were found remarkably stable across the seasons or between the weekdays/weekend. The patterns that our research revealed for the positive emotions and sadness showed more variability in response to these changing conditions, and higher levels of interaction with the onset of sunlight exposure. These techniques that we demonstrated on the social media provide valuable tools for the study of our emotions, and for the understanding of their interaction within the circadian rhythm."

Stafford Lightman, Professor of Medicine and co-author, added: "Since many mental health disorders are affected by circadian rhythms, we hope that this study will encourage others to use social media to help in our understanding of the brain and mental health disorders."

Fabon Dzogang, Stafford Lightman, Nello Cristianini.
Circadian mood variations in Twitter content.
Brain and Neuroscience Advances. doi: 10.1177/2398212817744501
.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...