Researchers 3-D Print Lifelike Artificial Organ Models

A team of researchers led by the University of Minnesota has 3D printed lifelike artificial organ models that mimic the exact anatomical structure, mechanical properties, and look and feel of real organs. These patient-specific organ models, which include integrated soft sensors, can be used for practice surgeries to improve surgical outcomes in thousands of patients worldwide.

The research was published today in the journal Advanced Materials Technologies. The researchers are submitting a patent on this technology.

"We are developing next-generation organ models for pre-operative practice. The organ models we are 3D printing are almost a perfect replica in terms of the look and feel of an individual's organ, using our custom-built 3D printers," said lead researcher Michael McAlpine, an associate professor of mechanical engineering in the University of Minnesota's College of Science and Engineering and a 2017 recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE).

"We think these organ models could be 'game-changers' for helping surgeons better plan and practice for surgery. We hope this will save lives by reducing medical errors during surgery," McAlpine added.

McAlpine said his team was originally contacted by Dr. Robert Sweet, a urologist at the University of Washington who previously worked at the University of Minnesota. Sweet was looking for more accurate 3D printed models of the prostate to practice surgeries.

Currently, most 3D printed organ models are made using hard plastics or rubbers. This limits their application for accurate prediction and replication of the organ's physical behavior during surgery. There are significant differences in the way these organs look and feel compared to their biological counterparts. They can be too hard to cut or suture. They also lack an ability to provide quantitative feedback.

In this study, the research team took MRI scans and tissue samples from three patients' prostates. Researchers tested the tissue and developed customized silicone-based inks that can be "tuned" to precisely match the mechanical properties of each patient's prostate tissue. These unique inks were used in a custom-built 3D printer by researchers at the University of Minnesota. The researchers then attached soft, 3D printed sensors to the organ models and observed the reaction of the model prostates during compression tests and the application of various surgical tools.

"The sensors could give surgeons real-time feedback on how much force they can use during surgery without damaging the tissue," said Kaiyan Qiu, a University of Minnesota mechanical engineering postdoctoral researcher and lead author of the paper. "This could change how surgeons think about personalized medicine and pre-operative practice."

In the future, researchers hope to use this new method to 3D print lifelike models of more complicated organs, using multiple inks. For instance, if the organ has a tumor or deformity, the surgeons would be able to see that in a patient-specific model and test various strategies for removing tumors or correcting complications. They also hope to someday explore applications beyond surgical practice.

"If we could replicate the function of these tissues and organs, we might someday even be able to create 'bionic organs' for transplants," McAlpine said. "I call this the 'Human X' project. It sounds a bit like science fiction, but if these synthetic organs look, feel, and act like real tissue or organs, we don't see why we couldn't 3D print them on demand to replace real organs."

Kaiyan Qiu, Zichen Zhao, Ghazaleh Haghiashtiani, Shuang-Zhuang Guo, Mingyu He, Ruitao Su, Zhijie Zhu, Didarul B Bhuiyan, Paari Murugan, Fanben Meng, Sung Hyun Park, Chih-Chang Chu, Brenda M Ogle, Daniel A Saltzman, Badrinath R Konety, Robert M Sweet, Michael C McAlpine.
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors.
Adv. Mater. Technol. 2365-709X. doi: 10.1002/admt.201700235.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...