Grid technology to help European cancer research project

The recently launched CancerGrid Project will bring together partners from industry and academia in the first ever large scale application of computer grid technology for finding and developing new anti-cancer agents.

The three-year multidisciplinary research programme funded by the EU will aim to combine new technologies with biology to enrich molecular libraries and increase the likelihood of discovering potential drugs to treat cancer.

"This innovative project utilizes grid-based computing technology for the automated design of chemical libraries, with the goal of discovering potential cancer treatments," said Michael Guaciaro, Ph.D., president and managing director of AMRI, one of the industrial partners in the project.

The project will employ the resources of grid computing to allow the researchers to tap into a powerful network of interconnected workstations able to process large amounts of data and reduce computational time.

Cancer affects millions of people and accounts for 13% of deaths around the world, according to the World Health Organization.

In the human genome, there is an estimated subset of approximately 3,000 genes that encode proteins, including novel cancer-related targets, which could be regulated with drug-like molecules.

The partners in the project will work towards developing specific chemical compound collections ('focused' chemical libraries) that interact with these cancer proteins.

"Our goal is to develop methods for creating chemical libraries containing molecules active against the newly emerging cancer targets," explained Gyorgy Dorman, head of science and technology at AMRI.

"The use of grid-aided technology should substantially increase both the likelihood of finding novel anti-cancer lead compounds, as well as increase the translation of basic knowledge into the application stage," he added.

This project is also expected to produce and validate a technology for in-silico design of chemical libraries and models that predict toxicity and target specificity. Once developed, these libraries will in theory be applicable to any drug discovery project.

For further information, please visit:
http://www.cancergrid.eu

Copyright ©European Communities, 2007
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...