Grid technology to help European cancer research project

The recently launched CancerGrid Project will bring together partners from industry and academia in the first ever large scale application of computer grid technology for finding and developing new anti-cancer agents.

The three-year multidisciplinary research programme funded by the EU will aim to combine new technologies with biology to enrich molecular libraries and increase the likelihood of discovering potential drugs to treat cancer.

"This innovative project utilizes grid-based computing technology for the automated design of chemical libraries, with the goal of discovering potential cancer treatments," said Michael Guaciaro, Ph.D., president and managing director of AMRI, one of the industrial partners in the project.

The project will employ the resources of grid computing to allow the researchers to tap into a powerful network of interconnected workstations able to process large amounts of data and reduce computational time.

Cancer affects millions of people and accounts for 13% of deaths around the world, according to the World Health Organization.

In the human genome, there is an estimated subset of approximately 3,000 genes that encode proteins, including novel cancer-related targets, which could be regulated with drug-like molecules.

The partners in the project will work towards developing specific chemical compound collections ('focused' chemical libraries) that interact with these cancer proteins.

"Our goal is to develop methods for creating chemical libraries containing molecules active against the newly emerging cancer targets," explained Gyorgy Dorman, head of science and technology at AMRI.

"The use of grid-aided technology should substantially increase both the likelihood of finding novel anti-cancer lead compounds, as well as increase the translation of basic knowledge into the application stage," he added.

This project is also expected to produce and validate a technology for in-silico design of chemical libraries and models that predict toxicity and target specificity. Once developed, these libraries will in theory be applicable to any drug discovery project.

For further information, please visit:
http://www.cancergrid.eu

Copyright ©European Communities, 2007
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...