Self-Powered Paper-Based 'SPEDs' may Lead to New Medical-Diagnostic Tools

A new medical-diagnostic device made out of paper detects biomarkers and identifies diseases by performing electrochemical analyses - powered only by the user's touch - and reads out the color-coded test results, making it easy for non-experts to understand. The self-powered, paper-based electrochemical devices, or SPEDs, are designed for sensitive diagnostics at the "point-of-care," or when care is delivered to patients, in regions where the public has limited access to resources or sophisticated medical equipment.

"You could consider this a portable laboratory that is just completely made out of paper, is inexpensive and can be disposed of through incineration," said Ramses V. Martinez, an assistant professor of industrial and biomedical engineering at Purdue University. "We hope these devices will serve untrained people located in remote villages or military bases to test for a variety of diseases without requiring any source of electricity, clean water, or additional equipment."

"SPEDs are inexpensive, lightweight, flexible and easy to use," Martinez said.

Research findings are detailed in a paper appearing on Aug. 22 in Advanced Materials Technologies.

The test is initiated by placing a pinprick of blood in a circular feature on the device, which is less than two-inches square. SPEDs also contain "self-pipetting test zones" that can be dipped into a sample instead of using a finger-prick test.

The top layer of the SPED is fabricated using untreated cellulose paper with patterned hydrophobic "domains" that define channels that wick up blood samples for testing. These "micro?uidic channels" allow for accurate assays that change color to indicate specific testing results. A machine-vision diagnostic application also was created to automatically identify and quantify each of these "colorimetric" tests from a digital image of the SPED, perhaps taken with a cellphone, to provide fast diagnostic results to the user and to facilitate remote-expert consultation.

The bottom layer of the SPED is a "triboelectric generator," or TEG, which generates the electric current necessary to run the diagnostic test simply by rubbing or pressing it. The researchers also designed an inexpensive handheld device called a potentiostat, which is easily plugged into the SPED to automate the diagnostic tests so that they can be performed by untrained users. The battery powering the potentiostat can be recharged using the TEG built into the SPEDs.

"To our knowledge, this work reports the ?rst self-powered, paper-based devices capable of performing rapid, accurate, and sensitive electrochemical assays in combination with a low-cost, portable potentiostat that can be recharged using a paper-based TEG," Martinez said.

He co-authored the paper with graduate students Aniket Pal and Debkalpa Goswami; visiting scholars Hugo E. Cuellar and Heloisa F. N. Caurin; and Randy Kuang, a high school student who participated in the research.

The research paper describes the SPEDs, the portable potentiostat and a machine-vision algorithm that is able to recognize the color-coded information. SPEDs are compatible with mass-printing technologies, such as roll-to-roll printing or spray deposition. They can perform "multiplexed" analyses enabling the highly sensitive and accurate detection of various targets for a range of point-of-care testing applications. And they can be used to power other electronic devices to facilitate telemedicine applications in resource-limited settings.

The SPEDs were used to detect biomarkers such as glucose, uric acid and L-lactate, ketones, and white blood cells, which indicate factors related to liver and kidney function, malnutrition and anemia. Future versions of the technology will contain several additional layers for more complex assays to detect diseases such as dengue fever, yellow fever, malaria, HIV and hepatitis, Martinez said.

Aniket Pal, Hugo E Cuellar, Randy Kuang, Heloisa F N Caurin, Debkalpa Goswami, Ramses V Martinez.
Self-Powered, Paper-Based Electrochemical Devices for Sensitive Point-of-Care Testing.
Adv. Mater. Technol. 2017, 1700130. doi: 10.1002/admt.201700130.

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...