Google Searches can be Used to Track Dengue in Underdeveloped Countries

An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational Biology by Shihao Yang of Harvard University and colleagues. The research builds on a methodology previously developed by the team to track influenza in the United States. This mathematical modeling tool, known as "AutoRegression with GOogle search queries" (ARGO), revived hopes in 2015 that internet search data could help health officials track diseases after earlier systems like Google Flu Trends and Google Dengue Trends returned poor results.

In the new study, the research team modified ARGO to explore its potential to track dengue activity in Mexico, Brazil, Thailand, Singapore, and Taiwan. Dengue, a mosquito-borne virus that infects about 390 million people each year, is often difficult to monitor with traditional hospital-based reporting due to inefficient communication, but dengue-related Google searches could provide faster alerts.

The researchers used Google's "Trends" tool to track the top ten dengue-related search queries made by users in each country during the study period. They also gathered historical dengue data from government health agencies and input both datasets into ARGO. Using the assumption that more dengue-related searches occur when more people are infected, ARGO calculated near real-time estimates of dengue prevalence for each country.

The scientists then compared ARGO's estimates with those from five other methods. They found that ARGO returned more accurate estimates than did any other method for Mexico, Brazil, Thailand, and Singapore. Estimates for Taiwan were less accurate, possibly because the country experienced less-consistent seasonal disease patterns from year to year.

The findings highlight the potential for Google searches to enable accurate, timely tracking of mosquito-borne diseases in countries lacking effective traditional surveillance systems. Future work could investigate whether this method could be improved to track disease on finer spatial and temporal scales, and whether environmental data, such as temperature, could improve estimates.

"The wide availability of internet throughout the globe provides the potential for an alternative way to reliably track infectious diseases, such as dengue, faster than traditional clinical-based systems," says study senior author Mauricio Santillana of Boston Children's Hospital and Harvard Medical School. "This alternative way of tracking disease could be used to alert governments and hospitals when elevated dengue incidence is anticipated, and provide safety information for travelers."

Yang S, Kou SC, Lu F, Brownstein JS, Brooke N, Santillana M.
Advances in using Internet searches to track dengue.
PLoS Comput Biol 13(7): e1005607. doi: 10.1371/journal.pcbi.1005607.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...