EU project develops intelligent wheelchair

Researchers in MAIA, an EU funded project, have shown how a person can control, using only their brain, the wheelchair on which they are sitting.

This requires tapping into the person's neural network, interpreting the cerebral signals in real time and then developing a mechanism that could respond to these instructions and steer the wheelchair with a high degree of accuracy.

Funded under the Information Society Technologies (IST) programme of the Sixth Framework Programme (FP6), the wheelchair is one of several non-invasive applications that could be controlled by the brain interface software developed by the researchers. Other applications include a robot for reaching and manipulation tasks, and handling emergency situations such as when the wheelchair or robot arm breaks down.

Human thoughts create impulses in specific areas of the brain. Simply thinking about moving left, for example, creates such an impulse. Using a portable electroencephalogram and electrodes placed on the scalp of a user, the brain interface picks up on these impulses, which are then digitised and analysed. The software is capable of distinguishing between different mental states that the user is experiencing. Sensors are also attached to the wheelchair in which the user is sitting, so that as it moves, it can perceive a doorway to its right or an obstacle ahead.

"The device combines the intelligence of human beings with the intelligence of the wheel chair," said the project coordinator, Dr. José del R Millán. "When a user executes a mental task, imagining for example the movement of his right arm, each of these tasks is associated with a high-level command on the wheelchair, for example, to turn left or go straight on."

The project consortium has run several successful experiments, including two sets of trials involving users who were mentally able to drive the wheelchair in a maze-like corridor. "But we need to be careful not to expect too much too soon," warns Dr. Millán. "While the chair is working well in the lab, it may not be sufficiently robust to work outside."

The goal of the project, which runs until the end of the year, will be to demonstrate the wheelchair through different trials with the hope of acquiring clinical validation.

While industry has yet to come knocking, Dr. Millán is hopeful that the project's work will dispel the belief that mind-controlled wheelchairs are just the stuff of science fiction.

Instead, the brain interface software and accompanying applications could be what makes the difference for tens of thousands of people who are utterly paralysed, otherwise known as 'locked in'. While able to perceive the world, to feel, to dream, these people are not able to communicate without the help of interfaces such as those developed by the MAIA project.

For further information, please visit:
http://www.maia-project.org/

Copyright ©European Communities, 2007
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...