Robot with a foot prosthesis

Running shoes, ski bindings and foot prostheses all have one thing in common: They must be tested thoroughly. This is now done by a robot-based 3-D test rig which simulates human movements, thus enabling any kind of load test to be carried out under realistic conditions.

It is one of those single-arm, orange-colored robots normally used to punch and weld sheet metal components for cars in large manufacturing halls. One such industrial robot can also be found in the laboratories of the Fraunhofer Technology Development Group TEG. However, the researchers there have given it much more human qualities. This robot arm can almost perfectly imitate the natural walking movements of a human being, and so, mounted on a treadmill, it walks and walks and walks. The reason for this continuous exertion is a prosthetic foot which is attached to the machine and is being put through its paces.

The TEG researchers have succeeded in developing a 3-D robot test rig that is capable of emulating a variety of different movements. Thanks to this robot, it is now possible to test various components and materials under realistic conditions for the first time. Be it to test the load capacity of a foot prosthesis or even to design new ski bindings or running shoes – the robot is able to exert three-dimensional forces, unlike conventional testing devices, and can turn, push or pull in any direction. "Thanks to bio-mechanical analyses, we understand the rolling movements of the foot," explains TEG project manager Andreas Reindl. "We use this know-how to program the robot. As a result, we can teach it all kinds of movements, just as the customer pleases. We do this by layering individual motion sequences on top of each other." The robot can then, for instance, exert a downward pressure while at the same time performing a forward pulling motion.

Once the robot has learnt to 'walk', the engineers can carry out extensive tests on the prosthesis or running shoe. A set of pressure measuring plates integrated in the treadmill can determine, for instance, how much load pressure the shoe's cushioning material can withstand. Video recordings and optical recognition systems also help to establish which material is best to ensure that the foot prosthesis is flexible enough to roll properly, but also firm enough to provide sufficient stability. This sophisticated robot test rig enables the engineers to test all kinds of materials. It could also be used for fatigue tests on fitness machines or various types of floor coverings. Manufacturers can be as inventive as they like in terms of the test requirements, as there is no limit to what the system can do.

For further information, please visit:
http://www.teg.fraunhofer.de/english/index.html

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...