Robot with a foot prosthesis

Running shoes, ski bindings and foot prostheses all have one thing in common: They must be tested thoroughly. This is now done by a robot-based 3-D test rig which simulates human movements, thus enabling any kind of load test to be carried out under realistic conditions.

It is one of those single-arm, orange-colored robots normally used to punch and weld sheet metal components for cars in large manufacturing halls. One such industrial robot can also be found in the laboratories of the Fraunhofer Technology Development Group TEG. However, the researchers there have given it much more human qualities. This robot arm can almost perfectly imitate the natural walking movements of a human being, and so, mounted on a treadmill, it walks and walks and walks. The reason for this continuous exertion is a prosthetic foot which is attached to the machine and is being put through its paces.

The TEG researchers have succeeded in developing a 3-D robot test rig that is capable of emulating a variety of different movements. Thanks to this robot, it is now possible to test various components and materials under realistic conditions for the first time. Be it to test the load capacity of a foot prosthesis or even to design new ski bindings or running shoes – the robot is able to exert three-dimensional forces, unlike conventional testing devices, and can turn, push or pull in any direction. "Thanks to bio-mechanical analyses, we understand the rolling movements of the foot," explains TEG project manager Andreas Reindl. "We use this know-how to program the robot. As a result, we can teach it all kinds of movements, just as the customer pleases. We do this by layering individual motion sequences on top of each other." The robot can then, for instance, exert a downward pressure while at the same time performing a forward pulling motion.

Once the robot has learnt to 'walk', the engineers can carry out extensive tests on the prosthesis or running shoe. A set of pressure measuring plates integrated in the treadmill can determine, for instance, how much load pressure the shoe's cushioning material can withstand. Video recordings and optical recognition systems also help to establish which material is best to ensure that the foot prosthesis is flexible enough to roll properly, but also firm enough to provide sufficient stability. This sophisticated robot test rig enables the engineers to test all kinds of materials. It could also be used for fatigue tests on fitness machines or various types of floor coverings. Manufacturers can be as inventive as they like in terms of the test requirements, as there is no limit to what the system can do.

For further information, please visit:
http://www.teg.fraunhofer.de/english/index.html

Most Popular Now

European Artificial Intelligence Act Com…

The European Artificial Intelligence Act (AI Act), the world's first comprehensive regulation on artificial intelligence, enters into force. The AI Act is designed to ensure that AI developed and used...

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

Generative AI can Not yet Reliably Read …

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

AI can Help Rule out Abnormal Pathology …

A commercial artificial intelligence (AI) tool used off-label was effective at excluding pathology and had equal or lower rates of critical misses on chest X-ray than radiologists, according to a...

What Does the EU's Recent AI Act Me…

The European Union's law on artificial intelligence came into force on 1 August. The new AI Act essentially regulates what artificial intelligence can and cannot do in the EU. A...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...