Engineers, Mathematicians and Doctors Unite to Develop New Breast Cancer-Detection Option

An international team comprising engineers, mathematicians and doctors has applied a technique used for detecting damage in underwater marine structures to identify cancerous cells in breast cancer histopathology images. Their multidisciplinary breakthrough, which has the potential to automate the screening of images and improve the detection rate, has been published in leading journal, PLOS ONE.

Breast cancer is the most prevalent form of cancer for women worldwide. Current breast cancer clinical practice and treatment mainly relies on the evaluation of the disease's prognosis using the Bloom-Richardson grading system. The necessary scoring is based on a pathologist's visual examination of a tissue biopsy specimen under microscope, but different pathologists may assign different grades to the same specimens.

However, the advent of digital pathology and fast digital slide scanners has opened the possibility of automating the prognosis by applying image-processing methods. While this undoubtedly represents progress, image-processing methods have struggled to analyse high-grade breast cancer cells as these cells are often clustered together and have vague boundaries, which makes successful detection extremely challenging.

But the new method has seemingly overcome that task, according to Assistant Professor in Civil Engineering at Trinity College Dublin, Bidisha Ghosh. She said: "This unique research group could draw on a broad and deep knowledge base. Experts in numerical methods and image-processing liaised with medical pathologists, who were able to offer expert insight and could tell us precisely what information was of value to them. It is an excellent example of how multidisciplinary research collaborations can address important societal issues."

Professor Joy John Mammen, Head of Department of Transfusion Medicine & Immunohaematology from the Christian Medical College, Vellore, India, said: "Detection of cancerous nuclei in high-grade breast cancer images is quite challenging and this work may be considered as a first step towards automating the prognosis."

The proposed technique, previously used for detecting damaged surface areas on underwater marine structures such as bridge piers, off-shore wind turbine platforms and pipe-lines was applied to histopathology images of breast cells. The researchers considered the likelihood of every point in a histopathology image either being near a cell centre or a cell boundary. Using a belief propagation algorithm, the most suitable cell boundaries were then traced out.

This technique was developed in conjunction with mathematicians in Madras Christian College, India. Lead author, Dr Maqlin Paramanandam, said: "The potential for this technology is very exciting and we are delighted that this international and inter-disciplinary team has worked so well at tackling a real bottle-neck in automating the diagnosis of breast cancer using histopathology images."

Dr Michael O'Byrne, who also worked in University College Cork during this project, added: "Coming from a civil engineering background where most of our image-processing tools were designed to assess structural damage, it was nice to discover some cross-over applications and find areas where we could lend our expertise. We all found it particularly rewarding to contribute towards breast cancer research."

The study was supported by a Science Foundation Ireland - International Strategic Cooperation Award.

Paramanandam M, O'Byrne M, Ghosh B, Mammen JJ, Manipadam MT, et al.
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.
PLoS ONE 11(9): e0162053. doi: 10.1371/journal.pone.0162053

Most Popular Now

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...