Engineers, Mathematicians and Doctors Unite to Develop New Breast Cancer-Detection Option

An international team comprising engineers, mathematicians and doctors has applied a technique used for detecting damage in underwater marine structures to identify cancerous cells in breast cancer histopathology images. Their multidisciplinary breakthrough, which has the potential to automate the screening of images and improve the detection rate, has been published in leading journal, PLOS ONE.

Breast cancer is the most prevalent form of cancer for women worldwide. Current breast cancer clinical practice and treatment mainly relies on the evaluation of the disease's prognosis using the Bloom-Richardson grading system. The necessary scoring is based on a pathologist's visual examination of a tissue biopsy specimen under microscope, but different pathologists may assign different grades to the same specimens.

However, the advent of digital pathology and fast digital slide scanners has opened the possibility of automating the prognosis by applying image-processing methods. While this undoubtedly represents progress, image-processing methods have struggled to analyse high-grade breast cancer cells as these cells are often clustered together and have vague boundaries, which makes successful detection extremely challenging.

But the new method has seemingly overcome that task, according to Assistant Professor in Civil Engineering at Trinity College Dublin, Bidisha Ghosh. She said: "This unique research group could draw on a broad and deep knowledge base. Experts in numerical methods and image-processing liaised with medical pathologists, who were able to offer expert insight and could tell us precisely what information was of value to them. It is an excellent example of how multidisciplinary research collaborations can address important societal issues."

Professor Joy John Mammen, Head of Department of Transfusion Medicine & Immunohaematology from the Christian Medical College, Vellore, India, said: "Detection of cancerous nuclei in high-grade breast cancer images is quite challenging and this work may be considered as a first step towards automating the prognosis."

The proposed technique, previously used for detecting damaged surface areas on underwater marine structures such as bridge piers, off-shore wind turbine platforms and pipe-lines was applied to histopathology images of breast cells. The researchers considered the likelihood of every point in a histopathology image either being near a cell centre or a cell boundary. Using a belief propagation algorithm, the most suitable cell boundaries were then traced out.

This technique was developed in conjunction with mathematicians in Madras Christian College, India. Lead author, Dr Maqlin Paramanandam, said: "The potential for this technology is very exciting and we are delighted that this international and inter-disciplinary team has worked so well at tackling a real bottle-neck in automating the diagnosis of breast cancer using histopathology images."

Dr Michael O'Byrne, who also worked in University College Cork during this project, added: "Coming from a civil engineering background where most of our image-processing tools were designed to assess structural damage, it was nice to discover some cross-over applications and find areas where we could lend our expertise. We all found it particularly rewarding to contribute towards breast cancer research."

The study was supported by a Science Foundation Ireland - International Strategic Cooperation Award.

Paramanandam M, O'Byrne M, Ghosh B, Mammen JJ, Manipadam MT, et al.
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.
PLoS ONE 11(9): e0162053. doi: 10.1371/journal.pone.0162053

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

AI-Human Task-Sharing could Cut Mammogra…

The most effective way to harness the power of artificial intelligence (AI) when screening for breast cancer may be through collaboration with human radiologists - not by wholesale replacing them...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...

Philips Future Health Index 2025 Report …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today unveiled its 2025 Future Health Index U.S. report, "Building trust in healthcare AI," spotlighting the state of...

AI-Powered Precision: Unlocking the Futu…

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine...

AI Model Improves Delirium Prediction, L…

An artificial intelligence (AI) model improved outcomes in hospitalized patients by quadrupling the rate of detection and treatment of delirium. The model identifies patients at high risk for delirium and...

Building Trust in Artificial Intelligenc…

A new review, published in the peer-reviewed journal AI in Precision Oncology, explores the multifaceted reasons behind the skepticism surrounding artificial intelligence (AI) technologies in healthcare and advocates for approaches...

SALSA: A New AI Tool for the Automated a…

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep...