Mathematics to Fight Cancer

Mathematicians and physicians at the University of Bonn have developed a new model for immunotherapy of cancer. The method could help to develop new treatment strategies and to understand why some approaches do not work with certain tumors. The study is now appearing in the technical journal Scientific Reports.

One of the greatest problems in the fight against cancer is the great hardiness of the tumors. Drug therapy often leads to initial success, which is then wiped out by a relapse. Sometimes the therapy has no affect at all against some cancer cells. Other cells develop resistance over the course of therapy.

Certain cells of the immune system, the so-called T-cells, can fight malignant tumors. Such cells are used or activated in a targeted manner to treat cancers. The research groups of Prof. Dr. Thomas Tüting and Prof. Dr. Michael Hölzel or the University of Bonn have demonstrated in their experiments on skin cancer that tumor cells can change their external appearance, if an inflammatory reaction occurs in the course of treatment. Consequently, the T-cells no longer recognize them as harmful, and the cancer can continue to spread unimpeded.

A new model from mathematicians and physicians from the Excellence Cluster of the Hausdorff Center for Mathematics and ImmunoSensation of the University of Bonn now describes this effect mathematically, thus making it possible to analyse it. In the future, the model could be used, among other things, for computer simulation of various therapeutic approaches and thus for the development of optimal treatment strategies.

Tumors as population
"The initial results show that treatment with several types of immune cells could in fact be a promising approach", says the lead scientist of this work, Prof. Dr. Anton Bovier of the Hausdorff Center for Mathematics. The studies are based on a stochastic model from the area of adaptive dynamics, which was developed by the mathematicians for application, for example, in cancer research. "Tumors are nothing other than populations of cancer cells, which interact with one another in a very complex manner and react to their environment in the form of the body and its immune system," explains Prof. Bovier.

Simulation of therapy
In numerical simulations by the Bonn researchers, the long-term success of a therapy, even when the starting conditions were the same, depended on random fluctuations in the population sizes of cancer and immune cells. Whether this effect also occurs in reality and not just on the computer still needs to be investigated experimentally. The virtual research of the Excellence Cluster has also showed that treatment, under certain circumstances, can even increase the probability of mutation in cancer cells. In some cases in the simulation, a therapy actually accelerated the development toward aggressive variants of cancer.

Prof. Hölzel of ImmunoSensation summarises the results of the interdisciplinary work as follows: "This project can both call the attention of mathematicians to possible applications of their work in a medical context and also sensitize physicians to the use of mathematical methods. In any case, we will continue to do joint research in the fight against cancer". To make it possible to use the model in practice, more experimental data still needs to be developed.

Martina Baar, Loren Coquille, Hannah Mayer, Michael Hölzel, Meri Rogava, Thomas Tüting & Anton Bovier (2016): A stochastic model for immunotherapy of cancer. Scientific Reports. DOI: 10.1038/srep24169.

Most Popular Now

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Experts Propose Specific and Suited Guid…

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including...

A Record Year with More than 800 Exhibit…

9 - 11 April 2024, Berlin, Germany. DMEA 2024 kicks off today, focusing on the key issues in the digital transformation of the healthcare system. From now until 11 April over...

Herefordshire and Worcestershire Health …

Herefordshire and Worcestershire Health and Care NHS Trust has successfully implemented Alcidion's Miya Precision platform to streamline bed management workflow across seven community hospitals in Worcestershire. The trust delivers community...