Smartphones could Improve Skin Cancer Detection in Developing Countries

Everyone knows smartphones can be used as calendars, calculators, radios and cameras. But, did you know they can also be used as microscopes that have the potential to save lives? They are called smartphone microscopes and dermatologists at The University of Texas Health Science Center at Houston (UTHealth) think these devices could improve the detection of skin cancer in developing countries.

"Doctors in some remote areas don't have access to the high-powered microscopes we use to evaluate skin samples," said Richard Jahan-Tigh, M.D., assistant professor of dermatology at John P. and Kathrine G. McGovern Medical School at UTHealth. "Doctors there could conceivable use their smartphones to photograph growths and forward them for examination."

When it comes to the diagnosis of cancer, smartphone microscopes are reasonably accurate, according to a study conducted by Jahan-Tigh and colleagues at McGovern Medical School and Harvard Medical School. Findings appear in the ARCHIVES of Pathology & Laboratory Medicine.

"We did a head-to-head comparison with a traditional light microscope and while the smartphone microscope wasn't as accurate it resulted in the detection of about 90 percent of the non-melanoma skin cancers," said Jahan-Tigh, the paper's lead author. "With the smartphone microscope, the detection rate for melanomas was 60 percent."

The incidence of both non-melanoma and melanoma skin cancers has been increasing in recent decades, the World Health Organization reports. Between 2 and 3 million non-melanoma skin cancers and 132,000 melanoma skin cancers occur globally each year.

"This is a good first step to show that smartphone microscopy has a future in dermatology and pathology," Jahan-Tigh said.

A smartphone microscope can be made with a 3 mm ball lens, a tiny piece of plastic to hold the ball lens over the smartphone lens and tape to grip everything in place. A ball lens costs about $14 at an electronics store and is typically used for laser optics.

Here is how a smartphone microscope works. A doctor or technician holds a smartphone microscope over a skin sample that has been placed on a slide and waits for the sample to come into focus. The doctor then either reads the sample if he or she is a pathologist, or takes a photo and emails it to a pathologist for interpretation.

Researchers examined 1,021 slides of specimens, which had a total of 136 basal cell carcinomas, 94 squamous cell carcinomas and 15 melanomas. The smartphone microscope was used to pick up 95.6 percent of the basal cell carcinomas and 89 percent of squamous cell carcinomas.

Jahan-Tigh said additional studies are needed to enhance the detection rate.

Jahan-Tigh used a smartphone microscope to evaluate the specimens and the conventional microscope was operated by Ronald Rapini, M.D., chairman of the Department of Dermatology, Marvin E. Chernosky, M.D. Endowed Distinguished Chair in Dermatology and Josey Professor in Dermatology with McGovern Medical School.

Both men are dermatologists and dermatopathologists, which means that in addition to being able to screen patients for skin cancer they can examine biopsied tissue to determine if it cancerous.

Rapini was the paper's senior author and Garrett M. Chinn, M.D., of Harvard, a co-author.

In their conclusion, the authors wrote that mobile phone-based microscopy has excellent performance characteristics for the inexpensive diagnosis of non-melanoma skin cancers in a setting where a traditional microscope is not available.

"This is just the tip of the iceberg," Jahan-Tigh said.

Richard R. Jahan-Tigh, Garrett M. Chinn, and Ronald P. Rapini
A Comparative Study Between Smartphone-Based Microscopy and Conventional Light Microscopy in 1021 Dermatopathology Specimens.
Archives of Pathology & Laboratory Medicine: January 2016, Vol. 140, No. 1, pp. 86-90.
doi: http://dx.doi.org/10.5858/arpa.2014-0593-OA

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...