Using Mathematics to Improve Human Health

Scientists at the Universities of York and Torino have used mathematics as a tool to provide precise details of the structure of protein nanoparticles, potentially making them more useful in vaccine design. Working with a world-leading group at the University of Connecticut in the USA, who pioneered the development of self-assembling protein nanoparticles (SAPNs) for vaccine design, they have used advanced mathematical calculations to create a complete picture of the surface morphology of these particles. The research is published in the Biophysical Journal.

The nanoparticles self-assemble symmetrically using protein building blocks to create cage or shell-like architectures, which serve a range of functions such as storage, catalysis and structural scaffolding, or as enclosures for viral genomes. But electron microscopy and neutron scattering data has limited effectiveness for researchers attempting to classify the morphology of the nanoparticles.

Using mathematics to predict the geometries of nanoparticles can help scientists to select those whose structures are the most advantageous for the design of new vaccines. The constant need for vaccine development as new strains of disease evolve has generated a world market worth $56 billion a year.

The new study focused on a class of artificial SAPNs designed by Professor Peter Burkhard, a structural biophysicist at the University of Connecticut. When chemically attached to antigens from pathogens, nanoparticles can create simple, potent and cost-effective vaccines. Clinical tests on a malaria vaccine designed in this way are due to start soon.

Researchers at York and Torino, led by biophysicist Professor Reidun Twarock, of the University of York's York Centre for Complex Systems Analysis and the Departments of Mathematics and Biology, used a mathematical tool called tiling theory to predict the symmetric classification of different particle morphologies of SAPNs. They adapted the tiling approach Professor Twarock previously pioneered in the context of virology to model protein nanoparticles with a mixture of local five- and three-fold symmetry axes.

Professor Twarock said: "We have developed a mathematical approach that allows you to identify the surface structures of these nanoparticles that you cannot get from experimentation alone. Mathematics plays an important role here because it acts like a microscope and helps to give researchers insights they couldn't get experimentally."

Professor Burkhard added: "The protein nanoparticles show great promise as future vaccine carriers and our malaria vaccine will be tested in a clinical setting within the next year. Understanding the geometric principles of the self-assembly to nanoparticles is essential for the successful design and development as vaccines."

The paper 'Principles Governing the Self-Assembly of Coiled-Coil Protein Nanoparticles' is published in The Biophysical Journal.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...