Fraunhofer Researchers are Presenting the "Mobile Health Assistant"

Sensor Assistance for Vital EventsHelp is at hand for cardiovascular patients: In future, a smart sensor network will monitor sufferers and alert the doctor when necessary. Fraunhofer researchers will be presenting the "Mobile Health Assistant" at the CeBIT fair in Hanover from March 15 to 21, 2007 (Hall 9, Stand B36).

A slight dizzy feeling when climbing the stairs, a brief dragging pain in the chest – are these the harmless after-effects of physical exertion, or are they the precursors of a heart attack? People with an increased risk of cardiovascular disease live in constant fear of sudden heart failure. Six Fraunhofer Institutes have spent two years working on a system that can record the main cardiovascular functions 24 hours a day over a long period of time, even away from the doctor’s office, and enables communication with qualified medical staff.

The key components of the mobile health assistant were developed in a joint Fraunhofer project entitled senSAVE® (Sensor Assistance for Vital Events). Along with comfortable, easy-to-wear sensors that constantly measure all the necessary data and transmit them by radio to a PDA, the assistant has the necessary software to collect and analyze the flood of information and send it via Internet or mobile network to a telemedical support center, where trained staff can assess how critical the situation is, advise patients over the phone, and call a doctor if necessary.

It was a challenging task to find suitable electrodes for channeling the ECG readings, as they would need to be in permanent contact with the patient’s skin for days at a time. The Fraunhofer researchers developed a highly flexible dry electrode that can be woven into the elastic fibers of a sensor shirt. Potential wearers are fitted with their own tailor-made sensor shirt. The sheer pressure of the garment is sufficient to establish contact between the skin and the adhesive electrodes. A second layer of fabric covers the sensor wiring and the electronic circuit board.

The oxygen saturation of the blood and the pulse wave curve are determined by a pulse oximeter. Until now the pulse oximeter has been pushed over the index or middle finger with a commercially available finger clip. In future it will be integrated in a strap to be worn on the person's wrist. From there, the readings will be radioed to a miniature computer, such as a smart phone or a PDA, which at the same time receives the ECG readings. The time difference between these two sets of readings yields the pulse wave transit time, from which it is possible in turn to deduce the blood pressure transit time – non-stop, 24 hours a day.

The PDA is the platform for the "Mobile Health Assistant". As well as recording the objective medical readings, it registers the user's subjective feelings and experiences – ranging from wellbeing or weight, through drugs taken and meals eaten, to sporting activities and exciting events. Such additional information makes it easier for the doctor to interpret and respond to irregularities and changes in the patient's cardiovascular readings. The patient is also advised and monitored on health issues. Rather like a personal organizer, the "digital nurse" can manage health plans, motivate the patient to stick to them, and suggest alternatives where appropriate.

Many senior citizens are unaccustomed to using a cell phone or a PDA. To meet this need, the Fraunhofer researchers have developed interface prototypes that take into account the particular abilities or limitations of their future users. One version is very simple, displaying only the most important facts in large type which can be read even by patients who have misplaced their spectacles. The other version is rather more complex, and so configured that it can be combined with other services on a PDA. The ergonomic design of this user interface can be viewed at CeBIT in a live demonstration of the "Mobile Health Assistant".

Fraunhofer innovation initiative "Intelligent Products and Environments"
Have you ever been stranded at the train station in a foreign city, not knowing which way to turn? Are you among the risk group for cardiovascular disease? Do you check each food item in the supermarket very carefully because you are not allowed to eat certain ingredients or would prefer not to do so? These three entirely different situations all have one thing in common: Ambient intelligence can help you. The vision of ambient intelligence is one in which everything is networked to form an "intelligent environment" that adapts to meet the user's needs. In order to make this vision a reality, several Fraunhofer Institutes have pooled their expertise in a Fraunhofer innovation initiative entitled "Intelligent Products and Environments". Under this initiative, scientists are developing demonstration platforms in the areas of health care assistance, smart logistics environments, and travel assistance. The demonstrators on display at CeBIT 2007 are just a few examples of how ambient intelligence could very soon be making life a little bit easier for all of us.

For further information, please contact:
Robert Couronné
Telefon +49 (0) 91 31/7 76-73 10
Fax +49 (0) 91 31/7 76-73 09
This email address is being protected from spambots. You need JavaScript enabled to view it.

Fraunhofer-Institut für Integrierte Schaltungen
Am Wolfsmantel 33
91058 Erlangen

www.sensave.de

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...