Smartphone Thumb Skills Are Altering our Brains

Every region of the body - from the toes to the jaw and tongue - has a particular processing area in the somatosensory cortex. These areas are flexible and can change. In the case of violinists, for instance, the area representing the fingers that guide the instrument is larger than in other people. Arko Ghosh from the Institute of Neuroinformatics of the University of Zurich and ETH Zurich decided to investigate the impact that the finger dexterity of Smartphone users has on the brain and discovered that the day-to-day plasticity of the human brain could be researched based on our Smartphone usage. And with their recordings the digital devices provide a fertile source of data for this behavior. "Smartphones offer us an opportunity to understand how normal life shapes the brains of ordinary people," explains Ghosh.

Teaming up with colleagues from the University of Fribourg, he studied the activation in the sensorimotor cortex, which is triggered by finger movements. The scientists used electroencephalography (EEG) to measure the cortical brain activity in 37 right-handed people, of whom 26 were touchscreen Smartphone users and 11 users of old cellphones. 62 electrodes placed on the test subject's heads recorded this potential based on movements of the thumb, forefinger and middle finger. The results revealed that the cortical representation in touchscreen Smartphone users differed compared to people with conventional cellphones.

Ghosh was also able to demonstrate that the frequency of Smartphone usage influences cortical activity. The more the Smartphone had been used in the previous ten days, the greater the signal in the brain. This correlation was the strongest, i.e. proportional, in the area that represented the thumb.

"At first glance, this discovery seems comparable to what happens in violinists," explains Ghosh. However, the researchers were able to draw two distinctions: Firstly, how long Smartphone users have owned and used a device does not play a role. In the case of violinists, however, the activity in the brain depended on the age at which they started playing. Secondly, there is a linear connection between the activation in the brain and the most recent use of a Smartphone, while there was no evidence of this for violinists in earlier studies.

"The digital technology we use on a daily basis shapes the sensory processing in our brains -- and on a scale that surprised us," says the neuroscientist in summary.

Anne-Dominique Gindrat, Magali Chytiris, Myriam Balerna, Eric Rouiller, Arko Ghosh. Use-dependent cortical processing from fingertips in touchscreen phone users. Current Biology.

Most Popular Now

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Experts Propose Specific and Suited Guid…

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including...