Novel Algorithm Detects Early Signals of Alzheimer's Disease

The projected substantial increase in Alzheimer's disease due to the higher life expectancy in modern societies is one of the great future challenges of health care systems worldwide. Alzheimer's disease leads to significant changes in the temporal structure of activities that impair everyday activities. Abnormal motion behavior and degeneration of the sleep-waking cycle are among the most severe behavioral symptoms. An early detection and even a prediction of these behaviors would allow a timely onset of interventions that aim to delay the manifestation or exacerbation of symptoms and reduce the need of institutionalized care.

An interdisciplinary joint study by the Medical Faculty and the Faculty for Computer Science and Electrical Engineering of Rostock University and the German Center for Neurodegenerative Diseases (DZNE) Rostock has now established a novel sensing algorithm that allows detecting the effect of Alzheimer's disease in unconstrained everyday motion behavior. In a dyad study with n=46 subjects (23 diagnosed with Alzheimer's dementia, 23 healthy controls), the method achieves an accuracy of 91% when labeling an unknown subject as "AD" or "healthy control". The algorithm uses spectral features of motion signals that are obtained by unobtrusive accelerometers worn by the subjects during their normal everyday activities.

"The method shows a substantially higher sensitivity than established behavioral rating scales, such as Cohen-Mansfield Agitation Index" emphasizes Prof. Teipel, head of DZNE Rostock and responsible for the study design. "This means, we now have a more sensitive instrument for detecting changes in behavior that allows us to monitor disease progress and the efficacy of interventions." He adds: "And the measure we obtain is objective, it does not require the assessment by a human observer."

"It is fascinating that our approach is able to work with unconstrained everyday motion behavior," says Prof. Kirste from the Computer Science Department, who has designed the analysis algorithm. "Considering the high variance of everyday activities, we think that the ability to detect the influence of Alzheimer's disease on the temporal structure of this behavior is a very important result." He remarks: "On a practical level this means we can use low-cost sensing devices and we do not require the patients to perform specific controlled activities. Prospectively, it might even be possible to use the data of established devices such as mobile phones or navigation support devices for this purpose."

The results of this study will be presented in the paper "Detecting the Effect of Alzheimer's Disease on Everyday Motion Behavior," scheduled for publication in issue 38(1) of the Journal of Alzheimer's Disease. An early online version of this paper is available at DOI: 10.3233/JAD-130272.

This study is part of a larger joint project that aims at establishing the effect of Alzheimer's disease on the temporospatial structure of an individual's Life Space. These effects will be used for both diagnostic purposes and for assistive interventions, such as supporting orientation in everyday activities.

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...