Molecular Coordination in Evolution: A Review in 'Nature Reviews Genetics'

Spanish National Cancer Research Centre (CNIO) researchers Alfonso Valencia, Director of the Structural Biology and Biocomputing Programme and David de Juan, jointly with Florencio Pazos, from the Spanish National Centre for Biotechnology (CNB-CSIC), publish a review on the latest computational methods that, based on evolutionary principles, are revolutionising the field of analysis and prediction of protein structure, function and protein-protein interactions, as well as the short- and long-term expectations for the field.

"The computational and mathematical analysis tools that study how proteins evolve in a coordinated fashion - a process known as molecular coevolution - have undergone important changes over the past few years," explains Valencia.

This revolution in the study of microscale evolution is allowing researchers to predict interactions between proteins and to understand the structural changes that take place in these molecules. It also represents the basis for understanding how mutations caused by diseases such as cancer or neurodegenerative disease affect their underlying molecular framework.

Proteins - just like the different species at the macroscopic level, via competitive or symbiotic interactions - do not act in an isolated manner but rather coordinate amongst themselves in order to carry out their functional roles. These biological relationships explain why there is a tendency in evolution to introduce coordinated changes in proteins, which allow for the preservation and modulation of these relationships.

"The development of new, more powerful and more reliable mathematical methods than those available in the 1990s is allowing us to explore these biological problems at the molecular level, and provide a deeper vision of the Darwinian process," says Valencia. "These methods based on coevolution are like a telescope, helping us to observe and understand biological and molecular processes."

In the revision, the authors describe those mathematical methods that, based on the evolution of pairs of proteins, are capable of predicting molecular interactions at different levels of complexity.

These methods include those approaches from the 1990s that predicted contact points between proteins; those that allow us to understand binding selectivity between very similar proteins - or ones that belong to the same family - and their ligands; or even, at a deeper level of complexity, those that predict interaction networks between the thousands of proteins that make up cells.

Over the last 20 years, Valencia's team has led several lines of research related to this field, many of which are still being studied by many other groups and in which his team continues to be a world leader.

"In 2012, we published a new set of predictions on the specificity of the binding of the Ras oncogene to other proteins. The tool was based on coevolution methods that we had developed a couple of years ago, and that are now being widely explored by other groups," explains Valencia. The Ras protein family is associated with a wide spectrum of cancers, so learning the language it uses with other proteins that are important for cells might open avenues for the development of novel drugs.

The authors of the study foresee a promising future for this field, in which bioinformatics programmers, physicists, biologists and mathematicians join forces in order to describe the complexity of protein dynamics.

"In the long term, we hope that unifying these methods will help us to manipulate or create new drugs that selectively target abnormal cells and therefore reduce side effects," says de Juan.

Emerging methods in protein co-evolution. David de Juan, Florencio Pazos, Alfonso Valencia. Nature Reviews Genetics (2013). doi: 10.1038/nrg3414

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...