Molecular Coordination in Evolution: A Review in 'Nature Reviews Genetics'

Spanish National Cancer Research Centre (CNIO) researchers Alfonso Valencia, Director of the Structural Biology and Biocomputing Programme and David de Juan, jointly with Florencio Pazos, from the Spanish National Centre for Biotechnology (CNB-CSIC), publish a review on the latest computational methods that, based on evolutionary principles, are revolutionising the field of analysis and prediction of protein structure, function and protein-protein interactions, as well as the short- and long-term expectations for the field.

"The computational and mathematical analysis tools that study how proteins evolve in a coordinated fashion - a process known as molecular coevolution - have undergone important changes over the past few years," explains Valencia.

This revolution in the study of microscale evolution is allowing researchers to predict interactions between proteins and to understand the structural changes that take place in these molecules. It also represents the basis for understanding how mutations caused by diseases such as cancer or neurodegenerative disease affect their underlying molecular framework.

Proteins - just like the different species at the macroscopic level, via competitive or symbiotic interactions - do not act in an isolated manner but rather coordinate amongst themselves in order to carry out their functional roles. These biological relationships explain why there is a tendency in evolution to introduce coordinated changes in proteins, which allow for the preservation and modulation of these relationships.

"The development of new, more powerful and more reliable mathematical methods than those available in the 1990s is allowing us to explore these biological problems at the molecular level, and provide a deeper vision of the Darwinian process," says Valencia. "These methods based on coevolution are like a telescope, helping us to observe and understand biological and molecular processes."

In the revision, the authors describe those mathematical methods that, based on the evolution of pairs of proteins, are capable of predicting molecular interactions at different levels of complexity.

These methods include those approaches from the 1990s that predicted contact points between proteins; those that allow us to understand binding selectivity between very similar proteins - or ones that belong to the same family - and their ligands; or even, at a deeper level of complexity, those that predict interaction networks between the thousands of proteins that make up cells.

Over the last 20 years, Valencia's team has led several lines of research related to this field, many of which are still being studied by many other groups and in which his team continues to be a world leader.

"In 2012, we published a new set of predictions on the specificity of the binding of the Ras oncogene to other proteins. The tool was based on coevolution methods that we had developed a couple of years ago, and that are now being widely explored by other groups," explains Valencia. The Ras protein family is associated with a wide spectrum of cancers, so learning the language it uses with other proteins that are important for cells might open avenues for the development of novel drugs.

The authors of the study foresee a promising future for this field, in which bioinformatics programmers, physicists, biologists and mathematicians join forces in order to describe the complexity of protein dynamics.

"In the long term, we hope that unifying these methods will help us to manipulate or create new drugs that selectively target abnormal cells and therefore reduce side effects," says de Juan.

Emerging methods in protein co-evolution. David de Juan, Florencio Pazos, Alfonso Valencia. Nature Reviews Genetics (2013). doi: 10.1038/nrg3414

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...