Graphene and Human Brain Project Win Largest Research Excellence Award in History

The European Commission today announced the winners of a multi-billion euro competition of Future and Emerging Technologies (FET). The winning Graphene and Human Brain initiatives are set to receive one billion euros each, to deliver 10 years of world-beating science at the crossroads of science and technology. Each initiative involves researchers from at least 15 EU Member States and nearly 200 research institutes.

"Graphene" will investigate and exploit the unique properties of a revolutionary carbon-based material. Graphene is an extraordinary combination of physical and chemical properties: it is the thinnest material, it conducts electricity much better than copper, it is 100-300 times stronger than steel and it has unique optical properties. The use of graphene was made possible by European scientists in 2004, and the substance is set to become the wonder material of the 21st century, as plastics were to the 20th century, including by replacing silicon in ICT products.

The "Human Brain Project" will create the world's largest experimental facility for developing the most detailed model of the brain, for studying how the human brain works and ultimately to develop personalised treatment of neurological and related diseases. This research lays the scientific and technical foundations for medical progress that has the potential to will dramatically improve the quality of life for millions of Europeans.

The European Commission will support "Graphene" and the "Human Brain Project" as FET "flagships" over 10 years through its research and innovation funding programmes. Sustained funding for the full duration of the project will come from the EU's research framework programmes, principally from the Horizon 2020 programme (2014-2020) which is currently negotiated in the European Parliament and Council.

European Commission Vice President Neelie Kroes said: "Europe's position as a knowledge superpower depends on thinking the unthinkable and exploiting the best ideas. This multi-billion competition rewards home-grown scientific breakthroughs and shows that when we are ambitious we can develop the best research in Europe. To keep Europe competitive, to keep Europe as the home of scientific excellence, EU governments must agree an ambitious budget for the Horizon 2020 programme in the coming weeks."

"Graphene" is led by Prof. Jari Kinaret, from Sweden's Chalmers University. The Flagship involves over 100 research groups, with 136 principal investigators, including four Nobel laureates. "The Human Brain Project" involves scientists from 87 institutions and is led by Prof. Henry Markram of the École Polytechnique Fédérale de Lausanne.

The future of computing and science will be driven by collaboration. The FET flagships programme is a world-leading effort to ride this wave. The flagship race has fostered collaboration on a new scale and duration. Instead of the usual two-to-four year funding cycles, the 10 year duration and the massive financial incentive has driven the level of science in the project proposals to a much higher level, which will deliver greater benefits to Europe over the long-term, including new technologies and faster innovation.

Horizon 2020 is the new EU programme for research and innovation, presented by the Commission as part of its EU budget proposal for 2014 to 2020. In order to give a boost to research and innovation as a driver of growth and jobs, the Commission has proposed an ambitious budget of €80 billion over seven years, including the FET flagship programme itself.

The winners will receive up to €54 million from the European Commission's ICT 2013 Work Programme. Further funding will come from subsequent EU research framework programmes, private partners including universities, Member States and industry.

Graphene: this material looks to become as important as steel or plastics in the long-term. Research on graphene is an example of an emerging translational nanotechnology where discoveries in academic laboratories are rapidly transferred to applications and commercial products. Graphene and related materials have the potential to make a profound impact in ICT in the short and long term: integrating graphene components with silicon-based electronics, and gradually replacing silicon or enabling completely new applications. Beyond ICT, graphene research will significantly impact energy and transport, and also health.

Human Brain Project: as a result of this initiative, in neuroscience and neuroinformatics the brain simulation will collect and integrate experimental data, identifying and filling gaps in our knowledge. In medicine, the project's results will facilitate better diagnosis, combined with disease and drug simulation. In computing, new techniques of interactive supercomputing, driven by the needs of brain simulation, will impact a range of industries, while devices and systems, modelled after the brain, will overcome fundamental limits on the energy-efficiency, reliability and programmability of current technologies, clearing the road for systems with brain-like intelligence.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...