eHealth Project of the Month - Clinicip

ICT for HealthDoes eHealth contribute to saving lives?
Every year, thousands of intensive care units (ICU) patients across Europe either die or stay sick for longer than necessary. The cause is the fact that many ICUs cannot easily control the glucose levels in each patient's blood. One EU eHealth project may have solved the problem.

Healthcare staff relies on a technique which uses insulin to control the glycaemia of recovering surgical patients. This method is also used to help patients at medical intensive care units to recover faster. "Studies show that when patient's glucose levels are managed carefully, the mortality is reduced and the morbidity is reduced too," says Martin Ellmerer, scientific director of the CLINICIP project.

Automated insulin delivery
The project hopes to develop an intelligent, automated glucose monitoring and control system for ICUs. It's called 'closed-loop' because monitoring glucose levels and administering insulin would be completed by one selfcontained system.

A closed-loop system needs inputs, analysis and outputs. The CLINICIP partners are developing a system that links glucose measurement to a control unit assessing a patient's needs, and then releases insulin automatically.

They have already developed an algorithm to analyse how much insulin is needed, based on carbohydrate intake and current glucose levels. The team believe they have solved the problem, but it will require long-term validation to get the correct fine-tuning. That algorithm is in trials, and the partners hope to have initial results early next year.

Internal or external glucose sensors?
The project is also currently studying sensor systems, both intra-vascular and extra-vascular – that is, within and outside the veins. If successful, automated sensor systems could greatly improve the survival chances of intensive care patients. They could also increase efficiency in clinical practice. That, however, is a long-term goal.

The ideal solution would be to use a glucose sensor system outside of the blood vessels. It's less invasive, and evidence suggests that it can provide a very accurate indication of real glucose levels in the blood.

But first the team must establish that the external sensor is accurate and reliable. The intravascular system is both accurate and reliable, but it is more invasive and time consuming, and not really appropriate for some types of patient such as cardiac arrest victims and infants.

Key recovery technique
Glucose effects blood toxicology, so careful management is essential to keep patients in the best possible health.

Glucose management is as important for medical and surgical intensive care patients as for diabetic patients. It's also important in paediatric intensive care cases. Intensive insulin therapy helps many different kinds of patient to survive or achieve a better recovery.

It is five years since medical science realised how vital glucose control is to ICU outcomes, but there is still no complete solution to glucose management because of its complexity.

Taking glucose levels manually is time-consuming and the impact of glucose levels varies from patient to patient, as does the dose of insulin required. It's a very complex problem, one that seems to be even more complex in critical illnesses than in diabetes management.

The body interface obstacle
The major obstacle currently facing the project is the body interface, or how the sensor in the body links to the rest of the closed-loop system. Ellmerer says that the team would be interested in hearing from any industrial partners involved in this area.

Even if the body interface problem is solved soon, he believes the full closed-loop system will not be developed within the lifetime of the project, which ends in January 2008. The work will continue however. "There are bilateral agreements between many of the partners to continue the work that we've started here after the life of the project," Ellmerer remarks.

In the meantime, CLINICIP's algorithm has provoked intense interest among medical scientists, and there have been calls to make the algorithm available to all ICUs.

"But it's just not possible yet. We haven't established definitively that it is sufficiently accurate, reliable and safe," warns Ellmerer. "That assessment is under way now."

ClinicipProject website: the closed Loop Insulin for Critically Ill Patients
http://www.clinicip.org/
Project overview:
CLINICIP fact sheet on CORDIS:
http://cordis.europa.eu/fetch?CALLER=PROJ_IST&ACTION=D&RCN=71227
IST Results feature:
http://istresults.cordis.europa.eu/index.cfm/section/
news/tpl/article/BrowsingType/Features/ID/88771

Related projects researching in this area:
http://cordis.europa.eu/fetch?CALLER=PROJ_IST&QZ_WEBSRCH=IST-2002- 2.3.1.11+QM_EP_PGT_A=&USR_SORT=EP_PJA_A+CHAR+ASC
Health Policy Relevance:
http://europa.eu.int/information_society/activities/
policy_link/policy_cases/index_en.htm#Health

For further information, please contact:
ICT for Health
European Commission - Information society and Media DG
Office: BU31 06/73 B-1049 Brussels
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Tel: +32 2 296 41 94
Fax: +32 2 296 01 81
http://europa.eu/information_society/eHealth

Most Popular Now

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...

New Medical AI Tool Identifies more Case…

Investigators at Mass General Brigham have developed an AI-based tool to sift through electronic health records to help clinicians identify cases of long COVID, an often mysterious condition that can...

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

MEDICA 2024 and COMPAMED 2024: Medical T…

11 - 14 November 2024, Düsseldorf, Germany. "Meet Health. Future. People." is MEDICA's campaign motto for the future in the new trade fair year 2025. The aptness of the motto...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...