Harnessing grid computing to save women's lives

Breast cancer is the most common cancer in women. In the EU and the US, one in eight will develop it at some point in their lives, and it will kill one in 28. But harnessing the power of the grid could help increase the accuracy of diagnoses.

Mammography examinations save thousands of women's lives every year. However the rate of misdiagnosis can be high – in some instances up to 30%. This is due in part to physical differences across patient populations, differences in equipment and procedures, and difficulty in using computers to help detect changes in breast tissue.

Computer-aided detection of this potentially fatal cancer, especially when used together with the traditional method of visually screening mammograms, can not only shorten the time needed for analysis, but can also help increase the accuracy of diagnoses.

Novel approach to comparative diagnoses
The team in the European IST project MammoGrid, which ended in August 2005, aimed to apply the power of the grid to see if they could more accurately detect breast cancer. The prototype software that resulted is already enabling users – hospitals, doctors, clinicians, radiologists and researchers – to harness the massive capacity of grid computing to run advanced algorithms on digital mammograms, stored Europe-wide.

The project team also developed a geographically distributed, grid-based database of standardised images and associated patient data. Already, there are 30,000 images stored from over 3,000 patients, equally balanced between the University Hospital of Cambridge in the UK and Udine in Italy.

The novelty of the MammoGrid approach lies in the application of grid technologies to medical diagnoses, and in providing the data and tools to enable users to compare new mammograms with existing ones in the grid database. Users can access mammograms from a variety of sources, and also computer-aided detection algorithms to detect micro-calcifications (tiny specks of calcium in the breast that could indicate cancer) and monitor breast density (dense tissue is considered a major risk factor).

Sharing resources and patient data
"The system in its current version allows users to securely share both resources and patient data which has been treated to ensure anonymity," explains project coordinator David Manset of Maat GKnowledge in Madrid, Spain. "It also supports effective co-working and provides the means for powerful comparative analyses through the use of a standard format for mammogram images".

This break-through functionality could lead to major advances in prevention and detection of the disease. It also opens the door to novel, broad-based statistical analyses of the incidence of breast cancer and its different forms.

MammoGrid+ building on the achievements
Since the project ended, a new consortium independent of IST funding has been set up to further develop the prototype and take it closer to market needs. Under Mammogrid+, a new set of partners (including organisations such as CIEMAT (Spain's Energy, Environmental and Technological Research Centre), CERN (Switzerland), SES (health service for the Extremadura region of Spain, representing the hospitals of Infanta Christina, Don Benito and Merida), and the university hospitals of Cambridge and Udine) is building on the results already achieved.

The new project team has set up four separate sites, to simulate the needs of four different hospitals and test the latest project developments. The results from these tests have been evaluated by a panel of two IT experts and five clinicians from the hospitals in Spain’s Extremadura region.

Their feedback is being incorporated into a pre-commercial release of the software (Mammogrid+ version 1.0) in June 2007. This version is being deployed within the five hospitals collaborating in the project – these hospitals will also receive the hardware infrastructure to host the Mammogrid+ suite.

Future plans include broadening the existing database Europe-wide. Already a further hospital, the university hospital of Cork in Ireland, has shown interest in joining the Mammogrid+ network.

"The inclusion of the new hospitals will increase the coverage of the database and make our knowledge more relevant and more accurate," Manset concludes. "This will allow larger and more refined epidemiological studies. In the end, these techniques could help save lives."

Contact:
David Manset
Maat GKnowledge
Calle San Bernardo num 115, 5 izq
E-28015 Madrid
Spain
Tel: +34 68 780 2661
Fax: +34 67 347 9175
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Source: IST Results Portal

For further information, please visit:
www.mammogrid.com

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...