Supercomputers Solve Riddle of Congenital Heart Defects

About 25,000 Danes currently live with congenital heart defects. Both heredity and environment play a role for these malformations, but exactly how various risk factors influence the development of the heart during pregnancy has been a mystery until now.

With the aid of a supercomputer, an international, interdisciplinary research team has analysed millions of data points. This has allowed the scientists to show that a huge number of different risk factors - for example in the form of genetic defects - influence the molecular biology of heart development.

"The discovery of a biological common denominator among many thousands of risk factors is an important step in health research, which in time can improve the prevention and diagnosis of congenital heart defects," explains Professor Lars Allan Larsen from the Department of Cellular and Molecular Medicine, University of Copenhagen.

Research results have recently been published in the well reputed scientific journal PNAS (Proceedings of the National Academy of Sciences). The project was supported by the Danish Heart Association, Novo Nordisk Foundation and Danish National Research Foundation, among others.

Scientists have analysed several thousand genetic mutations and environmental risk factors associated with heart malformations in the hope of finding a pattern or common factor.

"Our investigations show that many different genetic factors together with environmental factors can influence the same biological system and cause disease. The results are also interesting in a broader perspective, because it is probable that similar interactions are also valid for diseases such as schizophrenia, autism, diabetes and cancer," says Kasper Lage, Director of Bioinformatics at Harvard University, USA.

Thus the results of the study give scientists an idea of how different combinations of variations in hereditary material can dispose the individual to disease. "This is interesting if we want to make treatment more efficient by tailoring an optimal approach for each individual patient," adds Professor Søren Brunak from the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen.

When the international research team brought a systems biology perspective to bear on the huge data mass, they could see previously unknown and complex correlations between known risk factors and heart biology. "Systems biology is a relatively new and holistic research field that uses bioinformatics and supercomputers to investigate highly complex biological problems. For example, we know of a number of genetic mutations that cause heart defects - but it is first now we have been able to show which biological systems in the heart are influenced by the mutations in question," explains Professor Lars Allan Larsen.

The research approach of systems biology can lead to surprising and pioneering conclusions, but the work is difficult and requires a great degree of interdisciplinary collaboration. In this case team members include genetic scientists, cardiac specialists and experts in bioinformatics from universities, hospitals and industry.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...