Israeli researcher receives EU grant for development of 'electronic nose'

An Israeli researcher has been awarded a grant of € 1.73 million by the EU under its Marie Curie Excellence programme for the development of an 'electronic nose' that can sniff out cancer.

Dr Hossam Haick of the Israel Institute of Technology received the award as part of the EU's efforts to strengthen and encourage young promising scientists.

Dr Haick is 31 years old and also the recipient of the largest grant ever received from the EU by an Israeli researcher. He will be working on artificial olfactory systems or 'electronic noses' aimed at sniffing out and diagnosing cancer at the earliest possible stage before it spreads.

"Realisation of the research goal will enable creating an instrument based on nanometre-sized sensors that can diagnose different cancers and even determine at what stage the disease is," explains Dr Haick. "The diagnosis can be carried out at a very early stage even before the tumour has begun to spread. Thus, treatment will be immediate and will destroy the disease at its inception."

Electronic noses are one example of a growing research area called biomimetics, or biomimicry, which involves human-made applications patterned on natural phenomena.

As an odour is composed of molecules, each of which has a specific size and shape, each of these molecules has a receptor of a corresponding size and shape in the human nose. When a specific receptor receives a molecule, it sends a signal to the brain and the brain identifies the smell associated with that particular molecule. Electronic noses based on the biological model work in a similar manner, substituting sensors for the receptors, and transmitting the signal to a program for processing, instead of the brain.

Dr Haick intends to develop sensor arrays made of nanomaterials, understanding the fundamental chemical, physical, and electrical properties of these nanomaterials and the signal mechanism of these sensors.

He will also be developing the smallest versions of these electronic noses; the 'e-nose on chip', which is a single computer chip containing both the sensors and the processing components.

In addition, to targeting the early diagnosis, detection and screening of a disease, artificial olfactory systems are used in environmental-monitoring, the food industries and security.

For further information, please visit: Technion - Israel Institute of Technology

Copyright ©European Communities, 2006
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

MEDICA 2024 and COMPAMED 2024: Medical T…

11 - 14 November 2024, Düsseldorf, Germany. "Meet Health. Future. People." is MEDICA's campaign motto for the future in the new trade fair year 2025. The aptness of the motto...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...