Aiding Cancer Therapy by Mathematically Modeling Tumor-Immune Interactions

Mathematical modeling of cancer usually involves describing the evolution of tumors in terms of differential equations and stochastic or agent-based models, and testing the effectiveness of various treatments within the chosen mathematical framework. Tumor progression (or regression) is evaluated by studying the dynamics of tumor cells under different treatments, such as immune therapy, chemotherapy and drug therapeutics while optimizing dosage, duration and frequencies.

In a paper published last month in the SIAM Journal on Applied Mathematics, 'Controlled Drug Delivery in Cancer Immunotherapy: Stability, Optimization, and Monte Carlo Analysis,' authors Andrea Minelli, Francesco Topputo, and Franco Bernelli-Zazzera propose a differential equation model to describe tumor–immune interactions. "We study the dynamics of the competition between the tumor and the immune system," Topputo explains.

The relationship between cancers and the immune system has been studied for many years, and immune therapy has been known to influence tumor regression. Clinically called immunotherapy, it involves using external factors to induce, enhance, or suppress a patient's immune response for treatment of disease. In this study, the therapy consists of injecting a type of immune cells called dendritic cells, which generate tumor-specific immunity by presenting tumor-associated antigens.

"In particular, cancer immunotherapy has the purpose of identifying and killing tumor cells," says Topputo. "Our research considers a model that describes the interaction between the neoplasia [or tumor], the immune system, and drug administration." Such modeling and simulation can be used to assess the impact of drugs and therapies before clinical application.

Using ordinary differential equations, the authors model the progress of different cell populations in the tumor environment as a continuous process. Within the dynamical system presented by the tumor environment, they apply the theory of optimal control - a mathematical optimization method—to design ad-hoc therapies and find an optimal treatment.

The end goal of the control policy is to minimize tumor cells while maximizing effectors, such as immune cells or immune-response chemicals. "The aim is to minimize the tumor concentration while keeping the amount of administered drug below certain thresholds, to avoid toxicity," says Topputo. "In common practice, one searches for effective therapies; in our approach, we look for efficiency and effectiveness."

Elaborating on a prior study where indirect methods used to solve the optimal control problem are not effective, the authors use direct methods that apply algorithms from aerospace engineering to solve the associated optimal control problem in this paper. Optimal protocols are analyzed, and the duration of optimal therapy is determined.

The robustness of the optimal therapies is then assessed. In addition, their applicability toward personalized medicine is discussed, where treatment is customized to each individual based on various factors such as genetic information, family history, social circumstances, environment and lifestyle.

"We have shown that personalized therapy is robust even with uncertain patient conditions. This is relevant as the model coefficients are characterized by uncertainties," Topputo explains. "Further studies would include designing optimal protocols by considering personalized constraints based on individual patient conditions, such as maximum amount of drug, therapy duration, and so on."

Other future directions would be the use of more diverse models and studying the effectiveness of treatment combinations. "More detailed approaches like agent-based models that describe tumor-immune interactions and hybrid therapies that consist of combined chemotherapy-immunotherapy treatments should also be considered," says Topputo.

Andrea Minelli is a researcher in the Applied Aerodynamics Department at ONERA, The French Aerospace Lab in Meudon, France. Francesco Topputo is a post-doctoral research fellow and Franco Bernelli-Zazzera a full professor in the Aerospace Engineering Department at Politecnico di Milano in Milano, Italy.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...