Aiding Cancer Therapy by Mathematically Modeling Tumor-Immune Interactions

Mathematical modeling of cancer usually involves describing the evolution of tumors in terms of differential equations and stochastic or agent-based models, and testing the effectiveness of various treatments within the chosen mathematical framework. Tumor progression (or regression) is evaluated by studying the dynamics of tumor cells under different treatments, such as immune therapy, chemotherapy and drug therapeutics while optimizing dosage, duration and frequencies.

In a paper published last month in the SIAM Journal on Applied Mathematics, 'Controlled Drug Delivery in Cancer Immunotherapy: Stability, Optimization, and Monte Carlo Analysis,' authors Andrea Minelli, Francesco Topputo, and Franco Bernelli-Zazzera propose a differential equation model to describe tumor–immune interactions. "We study the dynamics of the competition between the tumor and the immune system," Topputo explains.

The relationship between cancers and the immune system has been studied for many years, and immune therapy has been known to influence tumor regression. Clinically called immunotherapy, it involves using external factors to induce, enhance, or suppress a patient's immune response for treatment of disease. In this study, the therapy consists of injecting a type of immune cells called dendritic cells, which generate tumor-specific immunity by presenting tumor-associated antigens.

"In particular, cancer immunotherapy has the purpose of identifying and killing tumor cells," says Topputo. "Our research considers a model that describes the interaction between the neoplasia [or tumor], the immune system, and drug administration." Such modeling and simulation can be used to assess the impact of drugs and therapies before clinical application.

Using ordinary differential equations, the authors model the progress of different cell populations in the tumor environment as a continuous process. Within the dynamical system presented by the tumor environment, they apply the theory of optimal control - a mathematical optimization method—to design ad-hoc therapies and find an optimal treatment.

The end goal of the control policy is to minimize tumor cells while maximizing effectors, such as immune cells or immune-response chemicals. "The aim is to minimize the tumor concentration while keeping the amount of administered drug below certain thresholds, to avoid toxicity," says Topputo. "In common practice, one searches for effective therapies; in our approach, we look for efficiency and effectiveness."

Elaborating on a prior study where indirect methods used to solve the optimal control problem are not effective, the authors use direct methods that apply algorithms from aerospace engineering to solve the associated optimal control problem in this paper. Optimal protocols are analyzed, and the duration of optimal therapy is determined.

The robustness of the optimal therapies is then assessed. In addition, their applicability toward personalized medicine is discussed, where treatment is customized to each individual based on various factors such as genetic information, family history, social circumstances, environment and lifestyle.

"We have shown that personalized therapy is robust even with uncertain patient conditions. This is relevant as the model coefficients are characterized by uncertainties," Topputo explains. "Further studies would include designing optimal protocols by considering personalized constraints based on individual patient conditions, such as maximum amount of drug, therapy duration, and so on."

Other future directions would be the use of more diverse models and studying the effectiveness of treatment combinations. "More detailed approaches like agent-based models that describe tumor-immune interactions and hybrid therapies that consist of combined chemotherapy-immunotherapy treatments should also be considered," says Topputo.

Andrea Minelli is a researcher in the Applied Aerodynamics Department at ONERA, The French Aerospace Lab in Meudon, France. Francesco Topputo is a post-doctoral research fellow and Franco Bernelli-Zazzera a full professor in the Aerospace Engineering Department at Politecnico di Milano in Milano, Italy.

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...