Aiding Cancer Therapy by Mathematically Modeling Tumor-Immune Interactions

Mathematical modeling of cancer usually involves describing the evolution of tumors in terms of differential equations and stochastic or agent-based models, and testing the effectiveness of various treatments within the chosen mathematical framework. Tumor progression (or regression) is evaluated by studying the dynamics of tumor cells under different treatments, such as immune therapy, chemotherapy and drug therapeutics while optimizing dosage, duration and frequencies.

In a paper published last month in the SIAM Journal on Applied Mathematics, 'Controlled Drug Delivery in Cancer Immunotherapy: Stability, Optimization, and Monte Carlo Analysis,' authors Andrea Minelli, Francesco Topputo, and Franco Bernelli-Zazzera propose a differential equation model to describe tumor–immune interactions. "We study the dynamics of the competition between the tumor and the immune system," Topputo explains.

The relationship between cancers and the immune system has been studied for many years, and immune therapy has been known to influence tumor regression. Clinically called immunotherapy, it involves using external factors to induce, enhance, or suppress a patient's immune response for treatment of disease. In this study, the therapy consists of injecting a type of immune cells called dendritic cells, which generate tumor-specific immunity by presenting tumor-associated antigens.

"In particular, cancer immunotherapy has the purpose of identifying and killing tumor cells," says Topputo. "Our research considers a model that describes the interaction between the neoplasia [or tumor], the immune system, and drug administration." Such modeling and simulation can be used to assess the impact of drugs and therapies before clinical application.

Using ordinary differential equations, the authors model the progress of different cell populations in the tumor environment as a continuous process. Within the dynamical system presented by the tumor environment, they apply the theory of optimal control - a mathematical optimization method—to design ad-hoc therapies and find an optimal treatment.

The end goal of the control policy is to minimize tumor cells while maximizing effectors, such as immune cells or immune-response chemicals. "The aim is to minimize the tumor concentration while keeping the amount of administered drug below certain thresholds, to avoid toxicity," says Topputo. "In common practice, one searches for effective therapies; in our approach, we look for efficiency and effectiveness."

Elaborating on a prior study where indirect methods used to solve the optimal control problem are not effective, the authors use direct methods that apply algorithms from aerospace engineering to solve the associated optimal control problem in this paper. Optimal protocols are analyzed, and the duration of optimal therapy is determined.

The robustness of the optimal therapies is then assessed. In addition, their applicability toward personalized medicine is discussed, where treatment is customized to each individual based on various factors such as genetic information, family history, social circumstances, environment and lifestyle.

"We have shown that personalized therapy is robust even with uncertain patient conditions. This is relevant as the model coefficients are characterized by uncertainties," Topputo explains. "Further studies would include designing optimal protocols by considering personalized constraints based on individual patient conditions, such as maximum amount of drug, therapy duration, and so on."

Other future directions would be the use of more diverse models and studying the effectiveness of treatment combinations. "More detailed approaches like agent-based models that describe tumor-immune interactions and hybrid therapies that consist of combined chemotherapy-immunotherapy treatments should also be considered," says Topputo.

Andrea Minelli is a researcher in the Applied Aerodynamics Department at ONERA, The French Aerospace Lab in Meudon, France. Francesco Topputo is a post-doctoral research fellow and Franco Bernelli-Zazzera a full professor in the Aerospace Engineering Department at Politecnico di Milano in Milano, Italy.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...