From Heterogeneous Patient Measurements Towards Earlier Diagnosis in Alzheimer's Disease

European PredictAD project, lead by Principal Scientist Jyrki Lötjönen from VTT Technical Research Centre of Finland, has developed a decision support tool for objective diagnostics of Alzheimer's disease. The tool compares measurements of a patient to measurements of other persons available in large databases and provides a simple index about the severity of the disease. The project has shown that the tool improves the accuracy of diagnosis and clinicians' confidence about their decision, making earlier diagnosis possible.

Dementia has been recently identified as a health priority both in Europe and in the USA. Alzheimer's disease, the most common cause of dementia, alone accounts for costs equivalent to about 1% of the gross domestic product (GDP) of the whole world and the number of persons affected will double in the next 20 years. Early diagnosis plays a key role in solving the problem because treatments of this irreversible disease should be started at an early phase to be efficient.

The current guidelines for the diagnostics of Alzheimer's disease emphasize the role of various biomarkers. These biomarkers include measures from magnetic resonance imaging (MRI), positron emission tomography (PET), biomarkers from cerebrospinal fluid (CSF) and genetic biomarkers in addition to evidenced memory impairment. No single patient measure provides enough information for diagnostics. Currently, clinicians make the final diagnosis by combining heterogeneous measurements with information from interviews of the patient and relatives. This process involves subjective reasoning and requires strong expertise from the clinicians.

Modern hospitals have huge data reserves containing information that nobody has extracted. For example, the hippocampus is a central structure for memory and affected in Alzheimer's disease and brain MRI image databases contain information about the normal variability of the hippocampus in healthy and disased persons. This information can be utilised in diagnostics by systematic mathematical modelling.

PredictAD has designed a totally novel approach for measuring objectively the state of the patient. This decision support system, developed in close collaboration with clinicians, compares patient measurements with measurements of other persons in large databases and provides at the end an index and graphical representation reflecting the state of the patient. The index is a barometer of the disease making grounds for decisions more solid and objective. The graphical representation provides a clinician in glance information about the status of her/his patient compared with hundreds of other persons, some having the disease and some being healthy.

"The PredictAD tool provides a new option to support decision making by providing objective information about the patient," says Prof. Hilkka Soininen from the University of Eastern Finland, leading the clinical validation of the project.

Prof. Gunhild Waldemar from Copenhagen University Hospital, Rigshospitalet emphasizes the importance of the Alzheimer's disease research: "Successful, early diagnostics combined with the novel drugs under development and early psychosocial care may delay the institutionalization of patients, reducing suffering and the costs to the society. It has been calculated that delaying the onset of the disease by five years would halve all costs of Alzheimer's disease and delaying onset and progression by only one year would reduce the number of Alzheimer's cases by about 10%."

This study was supported by the project "From patient data to personalized healthcare in Alzheimer's disease" (PredictAD) which was supported by the European Commission under the 7th Framework Programme.

J. Mattila, J. Koikkalainen, A. Virkki, A. Hviid-Simonsen, M. van Gils, G. Waldemar, H. Soininen, J. Lötjönen, The Alzheimer's Disease Neuroimaging Initiative. Disease State Fingerprint for Evaluating the State of Alzheimer's Disease in Patients. Journal of Alzheimer's Disease 27: 163-176, 2011.

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...