From Heterogeneous Patient Measurements Towards Earlier Diagnosis in Alzheimer's Disease

European PredictAD project, lead by Principal Scientist Jyrki Lötjönen from VTT Technical Research Centre of Finland, has developed a decision support tool for objective diagnostics of Alzheimer's disease. The tool compares measurements of a patient to measurements of other persons available in large databases and provides a simple index about the severity of the disease. The project has shown that the tool improves the accuracy of diagnosis and clinicians' confidence about their decision, making earlier diagnosis possible.

Dementia has been recently identified as a health priority both in Europe and in the USA. Alzheimer's disease, the most common cause of dementia, alone accounts for costs equivalent to about 1% of the gross domestic product (GDP) of the whole world and the number of persons affected will double in the next 20 years. Early diagnosis plays a key role in solving the problem because treatments of this irreversible disease should be started at an early phase to be efficient.

The current guidelines for the diagnostics of Alzheimer's disease emphasize the role of various biomarkers. These biomarkers include measures from magnetic resonance imaging (MRI), positron emission tomography (PET), biomarkers from cerebrospinal fluid (CSF) and genetic biomarkers in addition to evidenced memory impairment. No single patient measure provides enough information for diagnostics. Currently, clinicians make the final diagnosis by combining heterogeneous measurements with information from interviews of the patient and relatives. This process involves subjective reasoning and requires strong expertise from the clinicians.

Modern hospitals have huge data reserves containing information that nobody has extracted. For example, the hippocampus is a central structure for memory and affected in Alzheimer's disease and brain MRI image databases contain information about the normal variability of the hippocampus in healthy and disased persons. This information can be utilised in diagnostics by systematic mathematical modelling.

PredictAD has designed a totally novel approach for measuring objectively the state of the patient. This decision support system, developed in close collaboration with clinicians, compares patient measurements with measurements of other persons in large databases and provides at the end an index and graphical representation reflecting the state of the patient. The index is a barometer of the disease making grounds for decisions more solid and objective. The graphical representation provides a clinician in glance information about the status of her/his patient compared with hundreds of other persons, some having the disease and some being healthy.

"The PredictAD tool provides a new option to support decision making by providing objective information about the patient," says Prof. Hilkka Soininen from the University of Eastern Finland, leading the clinical validation of the project.

Prof. Gunhild Waldemar from Copenhagen University Hospital, Rigshospitalet emphasizes the importance of the Alzheimer's disease research: "Successful, early diagnostics combined with the novel drugs under development and early psychosocial care may delay the institutionalization of patients, reducing suffering and the costs to the society. It has been calculated that delaying the onset of the disease by five years would halve all costs of Alzheimer's disease and delaying onset and progression by only one year would reduce the number of Alzheimer's cases by about 10%."

This study was supported by the project "From patient data to personalized healthcare in Alzheimer's disease" (PredictAD) which was supported by the European Commission under the 7th Framework Programme.

J. Mattila, J. Koikkalainen, A. Virkki, A. Hviid-Simonsen, M. van Gils, G. Waldemar, H. Soininen, J. Lötjönen, The Alzheimer's Disease Neuroimaging Initiative. Disease State Fingerprint for Evaluating the State of Alzheimer's Disease in Patients. Journal of Alzheimer's Disease 27: 163-176, 2011.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...