EU Funded Clinical Workstation Will Help Accurately Detect Breast Cancer

HAMAMEach year 350,000 new cases of breast cancer are detected in the European Union, but a lack of effective technology to assist in cases that are difficult to diagnose means some cases go undetected or are incorrectly diagnosed. The EU is investing €3.1 million to develop better and quicker breast cancer diagnostics through the HAMAM project. This project is developing a prototype workstation to help diagnose breast cancer by integrating multi-modal images resulting from mammography, magnetic resonance imaging and other technologies as well as patient information. Doctors will be able to compare those multi-modal images side by side while viewing the patient's history and medical analyses. The workstation will be tested in selected hospitals in Germany, the UK and the Netherlands.

Commission Vice-President for the Digital Agenda Neelie Kroes said: "Breast cancer is a condition that touches millions of lives. In Europe about 130,000 women die of breast cancer every year. If more cancers could be detected on time, we could save many thousands of them. So I am very excited by the potential of the HAMAM project's digital technology to help save lives."

Around 350,000 new breast cancer cases are detected in Europe every year, which accounts for 26% of all new cancer cases among women. 17% of women dying from cancer each year die from breast cancer. Currently, the fight against breast cancer is focused on its early detection.

Despite advances in modern imaging technology, early detection and accurate diagnosis of breast cancer are still unresolved challenges. Unnecessary biopsies are taken and tumours frequently go undetected until a stage where a successful therapy is much more difficult or even impossible. The HAMAM project is tackling this by integrating multi-modal images and patient information on a single clinical workstation. Imaging modalities which can be compared include X-ray mammography, tomosynthesis, magnetic resonance imaging, 2D/3D ultrasound and positron emission mammography. The three-year project started in 2008 and received €3.1 million from the EU. It ensures that scientists, clinicians, and IT experts work together to collect all the existing patient data in a common database. More specifically, the project is developing clinical software tools that integrate imaging and quantitative data and combine it with personalised risk profiles for developing breast cancer, based on genetic information and family history.

The project's clinical advisory board involves leading experts in breast cancer diagnosis from six EU member states (Belgium, Germany, Italy, The Netherlands, Sweden and the UK) as well as from the US. Clinical tests will be undertaken in hospitals in Berlin (Germany), Dundee (the UK) and Nijmegen (The Netherlands). The tests will be supported by IT experts from several universities in Europe.

HAMAM is a successor of two other EU-funded projects: SCREEN and SCREEN-TRIAL. These projects brought major advances in European breast cancer diagnosis, meaning that today Europe is the world leader in diagnostic systems for digital mammography. With HAMAM, Europe will strengthen its leadership in the area of image-based breast cancer diagnoses.

For further information, please visit:
http://www.hamam-project.eu

Related articles:

Most Popular Now

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...