Smart Integrated Biodiagnostic Systems for Healthcare

The SmartHEALTH project is designed to develop and deliver the next generation of smart bio-diagnostic systems capable of being fully integrated into healthcare systems in Europe. Driven by key applications in cancer diagnostics, SmartHEALTH will enable enhanced medical diagnosis leading to earlier and more precise results and thus contributing to an increased quality of life.

In addressing the high economic burden of the healthcare sector, prevention, early diagnosis and informed therapeutics are indispensable. Tests must be highly accurate and well integrated into medical management to avoid unnecessary treatment and stress to users.

SmartHEALTH will address these complex issues by developing highly intelligent diagnostic technologies that can be fully integrated into healthcare systems, optimising their impact in management and work practice. Driven by key targeted applications in cancer diagnostics (breast, cervical and colorectal), the project will deliver prototype systems with the aim of moving instrumentation from the laboratory, through to portable devices localised at the "point of care".

Cancers are not 'cured' but 'managed'. One of the major areas of progress with cancers, for example, breast cancer, is the benefit of long term therapies for reducing growth rates. This approach requires regular monitoring such that the efficacy of maintenance therapy is rapidly noted and different therapy can be initiated if and when required. This necessitates regular testing for cancer load. People wish to avoid hospital yet want results interpreted expertly and communicated rapidly. They want tests that do not miss problems yet avoid unnecessary worry. SmartHEALTH aims to develop such integrated cancer monitoring diagnostic devices, eventually useable in localized and more available settings.

The overall SmartHEALTH objectives include:

  • Introduce new SmartHEALTH sensor systems into future healthcare services to improve and better existing services
  • Demonstrate the role of on-line services for pervasive healthcare provision
  • Demonstrate clinical evaluation of systems for targeted applications in breast, cervical and colorectal cancer
  • Assess the economic benefits and means of healthcare provision for the targeted clinical applications
  • Develop new manufacturing and packaging technologies for realisation of unique sensor solutions integrating fluidics, transducers and biological assays
  • Facilitate ethical and social acceptance of SmartHEALTH technology

The SmartHEALTH project will be present at booth F29/2 at ComPaMed, Düsseldorf/Germany, to display a desktop POC instrument for detection of cancer markers, a series of detection chips (Electrochemical Detection Chip, Circular Disc Resonator Sensor, qPCR chip for detection of HPV, qPCR chip for detection of colorectal cancer, and a number of fluidic modules such as RNA-extraction, plasma generation, lyophilisation platforms, or micro mixers.

The project is also organising a workshop on Friday, 20th November, 11:00-13:30, within the ComPaMed Forum which includes a Panel Discussion on "Enabling Point-of-Care Diagnostics: Lab-on-a-Chip innovative Sensor Technologies".

For further information, please visit:
http://www.smarthealthip.com

Related article:

About the SmartHEALTH Integrated Project
Driven by clinical applications and MNT & IST technology, the SmartHEALTH project will develop an open integrated architecture for new biodiagnostic systems to support European companies exploiting bioassays or new application concepts. The initial system has a disposable fluidic cartridge with a desktop base-station linking to the ambient e-Health environment. Ultimately, this system will perform multi-analyte sensing and data/trend analysis for nucleic acids and proteins and will be modular to allow multiple biological sample types to be dealt with. Results will be interpreted and presented using bio-information analysis based on trained neural networks. Systems will be healthcare "user identity-" and "ambient environment-" aware, respecting confidentiality and information access rights. This concept will be miniaturized and cost engineered into a portable and more available system. The project will enable enhanced medical diagnosis, leading to earlier and more precise results contributing to an increased quality of life as well as increasing the competitiveness of the European in vitro diagnostics (IVD) sector. Clinical areas for SmartHEALTH application are in Cancer Diagnostics - breast cancer recurrence monitoring, cervical cancer case finding, and colorectal cancer diagnostics, prognostics and theranostics. Each application includes clinical instrument evaluation and commercial exploitation partners.

The SmartHEALTH Integrated Project is funded by the European Commission under project identifier FP6-2004-IST-NMP-2-016817.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...