Defeating the smartcard code-crackers

Smart as they are, the protective codes of smart cards can be cracked using off-the-shelf technology. But the latest secure chips developed by one European team may soon frustrate hackers and thieves. Produced using a new and much faster design process, these chips can withstand more attacks than before.

Some two million new smartcards are rolled out every month, so the encrypted personal data that people store on these cards must be safe. And to date it has been. Yet the security threat is growing, as the electronic devices capable of breaking the card codes become cheaper and more powerful.

"It takes little more than an oscilloscope and a standard PC to mount a digital attack on an unprotected smartcard," says Klaus-Michael Koch. He is coordinator of the IST project SCARD, which aims to increase the security of chips on smart cards.

With equipment like this and some know-how, attackers can expose the content that a smart card is supposed to protect. Using techniques such as side-channel analysis (SCA), they can reveal part of a secret key, notably by examining a chip's power leakage as it performs computations or by scrutinising its thermal or electromagnetic radiation. If the card's owner is the attacker, he or she could upload money to an electronic purse, access a satellite TV system for free or claim to be someone else.

Improved design flow
Under SCARD, the partners wanted to put together a 'design flow' that allows semi-automatic implementation of countermeasures. The design flow is the digital design of a chip – the specifications, modelling of performance, algorithms and functionality up until the stage when the chip developer can start the synthesizer and compiler. Typically, this design process is costly and may take several years.

In-chip countermeasures must be included during the design period. They cannot be simulated, so developers must experiment with the shielding of a card's chip to limit temperature and voltage variations, or they must laboriously place transistors on it by hand.

For the hardware security issue, the partners developed prototypes of a design flow and carried out chip testing. They also paved the way for an automatic chip design process which would allow other companies to develop new and more secure chips.

"We succeeded in making the hardware more secure against side-channel analysis (SCA)," says Koch. "The chip we built was used to deduce the measurability limits, enabling us to assess the sort of countermeasures necessary against differential power attacks."

Countermeasures mask chip contents
To tackle leaky circuits, the SCARD partners developed two main countermeasures. The first introduces circuits with constant power consumption, irrespective of the tasks being performed. Says Koch, "Each clock cycle has the same energy. But these circuits must be perfectly executed, since even a three or four percent difference in energy can be seen." The second involves adding random values to the chip, masking the circuit's real values. Noise could also be added, though this is not currently feasible in smartcards due to energy-loss restrictions.

They have also developed an eight-bit test chip, featuring both unprotected and (seven) protected versions of the same circuit. The chip includes a microcontroller, is fully programmable and has reduced leakage. It is also capable of resisting over 500,000 attempted measurements, as opposed to the 15,000-measurement threshold for an ordinary (unprotected) chip. As a result, researchers can for the first time directly compare the effect of certain countermeasures on unprotected or protected versions of the same circuit on the same chip.

"Our new chip is not one hundred percent secure," acknowledges Koch. "However, it is far more difficult to crack than existing unprotected versions and represents a quantum leap forward in security." Though the project is now over, further research will be conducted on the remaining 25 test chips.

The new chip was produced using the project's own design flow, taking just one year from specification to production. "We demonstrated that our chip design flow – our set of tools and methods – really works," he notes.

Patents applied for
Two partners, Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie (IAIK, Austria) and Infineon, have applied for international patents stemming from their project work. These include countermeasures with new secure logic styles that cover innovative transistor circuits. Some of the countermeasure technology developed is also being used in IAIK's security crypto-modules.

The project results are now being disseminated through teaching – since some of the project partners are universities or technical small and medium-sized enterprises. A recent workshop in Louvain-la-Neuve, Belgium, to present SCARD's results attracted some 100 security-industry experts.

Contact:
Klaus-Michael Koch
Director of Research and Development
Technikon Forschungs- und Planungsgesellschaft mbH
Richard-Wagner-Str. 7
A-9500 Villach
Austria
Tel: +43 424 223355
Fax: +43 424 223355-77
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Source: IST Results Portal

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...