Finnish Heart Research Technology VTT's Method Eases Early Diagnosis of Severe Heart Muscle Disease

Dilated cardiomyopathy, a heart muscle disease leading to dilation and impaired contraction of the left ventricle, is a severe and often familial disease. It is difficult to diagnose the disease with cardiac ultrasound, particularly at an early stage when there are only minimal, early changes of the heart. VTT Technical Research Centre of Finland has developed a method based on cardiac MRI, currently in research use, to help the physician to identify disease-related changes of the heart at an early stage.

In dilated cardiomyopathy, the heart dilates and impaired contraction of the left ventricle leads to heart failure. The disease may be suspected based on symptoms and an enlarged cardiac shadow revealed in a chest x-ray, for example. The diagnosis is typically verified by cardiac ultrasound examination. At an early stage, minimal changes of the heart are difficult to observe with ultrasound because their distinction from normal variation can challenge even an experienced cardiologist.

The method developed during VTT's co-operation project utilises database data on variations in cardiac muscle measured with MRI scans taken from different projections. Cardiac MRIs of the patient are compared with database data on normal variation in healthy hearts, and with disease-related variation in healthy and sick hearts. This corresponds to the knowledge of an experienced physician on the appearance of cardiac MRI images and their deviations. With the help of this method developed by VTT, the essential information for diagnosis is easily available for all physicians regardless of their experience in interpreting cardiac MRIs.

Measurement values have been identified with the help of MRI to enable diagnosis at a very early stage of the disease. The key issue of the method is to develop a new visualisation technique, which enables presentation of essential information from a very large measurement set in an easily interpretable form. In addition, this research has developed a disease index representing the severity of disease, which offers a simple method for monitoring the disease and its treatment, for example.

The developed methods will be first applied, in a research context, to research and analysis of changes produced by various diseases and disease mechanisms. Later the goal is to provide a method for clinical use to assist physicians in diagnosing. The research will be explored further by applying the methods in the research of other heart and brain diseases. In addition to imaging data, the analysis method will include cell metabolism data acquired from blood samples, for example.

Information on dilated cardiomyopathy
Dilated cardiomyopathy is a severe heart disease, which causes dilation of the myocardium and is familial in as many as one third of cases. Because of this, it is recommended that the first-degree family members of the patient, even those with no symptoms, be examined to identify potential evidence of incipient disease. To organise monitoring and treatment, it is vital to identify as reliably as possible all of those, including the symptomless, who will later be at risk of developing the disease. In some cases, those at risk of developing the disease can be identified with DNA analysis.

A diseased myocardium can not be healed but the symptoms can be greatly alleviated with heart failure medication. Incidence of the disease in the adult population is approximately 36.5/100,000 and markedly lower among children. In Finland, dilated cardiomyopathy is the leading cause for heart transplantation and causes a considerable amount of morbidity and premature mortality among the working population.

Partners of the research are VTT Technical Research Centre of Finland, the Hospital District of Helsinki and Uusimaa (HUS), the Kuopio University Hospital (KYS) and the University of Kuopio.

About VTT Technical Research Centre of Finland
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders. For further information, please visit http://www.vtt.fi.

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...