GAP Project - New Approach to Health Risk Prediction

The GAP Project's goal is to assess the need and the means for a "generic predictive model" for an ICT system capable to produce health alarms at EU level and design a roadmap for the future research on ICT tools for Guard (Detection), Anticipation and Prediction of potential large scale threats. The Project is focused on four types of risks: Biological (communicable diseases and bioterrorism), Natural, Industrial and Nuclear and Terrorist Risks.

The protection of the public's health is one of the most important aims of European countries. In the last decade, many efforts have been made to develop national and international systems for surveillance, anticipation and prediction of threats to public health, utilizing different tools for monitoring, data sharing and modeling. However, the overall technological design of systems that will be able to generate timely alerts and prediction of health threats, and the way to construct them, need still more development.

Investigation of aspects related to ICT research in new risk prediction, assessment and management tools for preparation, surveillance, support and intervention in case of largescale adverse health events was one of the main objectives of the European Commission, through the ICT e-health programme, when launching the GAP (Guard Anticipation & Prediction ) Project.

The GAP Project involves three major steps: Mapping "state of the art" technologies, outlining a generic ICT predictive model, and proposing a roadmap for the research needed to implement it.

The mapping exercise evidenced, among other findings, that there are significant differences between countries for both the processes and the information systems that they use to anticipate health threats; that most of the existing systems focus on surveillance and early detection rather than prediction; and, also, that systems are fragmented and do not function as an integrated structure.

The proposed generic model outlines the characteristics, from the technical and organizational point of view, of a future paneuropean structure, based on interoperability among the actual systems, serving as a tool for management and decision-making at the prediction level.

Currently, the GAP consortium, with the help of key experts, is finalizing the road map that includes the identified key ICT research activities proposed , in order to allow the development of future interoperable prediction systems.

For further information, please visit:
http://www.gaptheproject.eu/

Related article:

  • FP7 Projects: GAP

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...