Faster, more efficient searching of medical images

A Danish-led research project has made encouraging progress toward using advanced mathematics as the basis of an improved method for indexing and searching medical images in the huge digital databases of clinics and hospitals.

Completed in November 2005, the DSSCV consortium's long-term goal was to contribute to software tools allowing doctors and hospital technicians to quickly search and match X-rays, magnetic resonance images and computed 3D tomography scans, particularly of the craniofacial region.

"Let's say a doctor has a new patient with a broken bone," says coordinator, Mads Nielsen, a professor of computer science at the IT University of Copenhagen. "He remembers seeing a similar fracture and wants to recall how he treated that patient, but doesn't remember the case number. By inputting the X-ray of the new patient, this computer system would allow finding the relevant, digitally stored image of that kind of fracture."

"Anybody that needs to compare or search images for specific features could use the technology," says Nielsen. However, he estimates that practical use will require five to 10 more years of development.

Funded under the European Commission’s FET (Future and Emerging Technologies) initiative of the IST programme, the DSSCV project gathered mathematicians and computer scientists from four European universities with the objective of developing more efficient algorithms for comparing shapes, in this case images. "A shape is a very complicated thing to describe mathematically," explains Nielsen. "To efficiently compare shapes, you need something that doesn't compare every feature."

The researchers refined the practical application of singularity and scale-space theories to develop algorithms that describe the deep structure of a shape, which Nielsen explains as a collection of details, called singularities. Such an algorithm makes it possible to disregard singularities that do not match the particular shape sought.

"An analogy would be a stadium full of 20,000 spectators, and you want to find your brother”, he says. "You are not going to look at every wrinkle, eyebrow and strand of hair. You eliminate the details that are irrelevant in order to zoom in on your brother."

The team worked with theories of how singularities emerge and disappear in an image. For example, catastrophe theory can explain how one slight change to part of an image can drastically change the overall picture. Says Nielsen, "Zoom in on a tree, and branches and leaves appear. The algorithm we've developed allows such a coarse-to-fine way to break shapes into parts, compare them and determine how they relate to each other."

DSSCV partners have been awarded five grants, for the projects ‘Natural shape’, from the Danish Research Agency; ‘Quantitative shape modelling in biomedical imaging’, from the Danish Technical Research Council; ‘The problem of scale in biomedical image analysis’ and ‘Robust multi-scale methods for optic flow’, from the Dutch Science Foundation; and a grant from the British Research Council for Science and Engineering.

Nielsen says computer vision is still an exploratory field, moving in many different directions. Still, due to pressure from major medical equipment manufacturers, some areas are beginning to standardise—especially in the medical area.

Scientific communication is key to progress, says Nielsen. DSSCV has presented results in several scientific journals and conferences and held an open workshop with participants from the US and Japan. "We gained and provided valuable insights. The feedback has been good."

Looking ahead, Nielsen says, "We've done the deep mathematics. Now we'd like to do another project with other partners more involved in the practical issues, such as doctors and hospitals."

Contact:
Mads Nielsen
IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark
Tel: +45-72-185075
Fax: +45-72-185001
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Source: IST Results

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...