Faster, more efficient searching of medical images

A Danish-led research project has made encouraging progress toward using advanced mathematics as the basis of an improved method for indexing and searching medical images in the huge digital databases of clinics and hospitals.

Completed in November 2005, the DSSCV consortium's long-term goal was to contribute to software tools allowing doctors and hospital technicians to quickly search and match X-rays, magnetic resonance images and computed 3D tomography scans, particularly of the craniofacial region.

"Let's say a doctor has a new patient with a broken bone," says coordinator, Mads Nielsen, a professor of computer science at the IT University of Copenhagen. "He remembers seeing a similar fracture and wants to recall how he treated that patient, but doesn't remember the case number. By inputting the X-ray of the new patient, this computer system would allow finding the relevant, digitally stored image of that kind of fracture."

"Anybody that needs to compare or search images for specific features could use the technology," says Nielsen. However, he estimates that practical use will require five to 10 more years of development.

Funded under the European Commission’s FET (Future and Emerging Technologies) initiative of the IST programme, the DSSCV project gathered mathematicians and computer scientists from four European universities with the objective of developing more efficient algorithms for comparing shapes, in this case images. "A shape is a very complicated thing to describe mathematically," explains Nielsen. "To efficiently compare shapes, you need something that doesn't compare every feature."

The researchers refined the practical application of singularity and scale-space theories to develop algorithms that describe the deep structure of a shape, which Nielsen explains as a collection of details, called singularities. Such an algorithm makes it possible to disregard singularities that do not match the particular shape sought.

"An analogy would be a stadium full of 20,000 spectators, and you want to find your brother”, he says. "You are not going to look at every wrinkle, eyebrow and strand of hair. You eliminate the details that are irrelevant in order to zoom in on your brother."

The team worked with theories of how singularities emerge and disappear in an image. For example, catastrophe theory can explain how one slight change to part of an image can drastically change the overall picture. Says Nielsen, "Zoom in on a tree, and branches and leaves appear. The algorithm we've developed allows such a coarse-to-fine way to break shapes into parts, compare them and determine how they relate to each other."

DSSCV partners have been awarded five grants, for the projects ‘Natural shape’, from the Danish Research Agency; ‘Quantitative shape modelling in biomedical imaging’, from the Danish Technical Research Council; ‘The problem of scale in biomedical image analysis’ and ‘Robust multi-scale methods for optic flow’, from the Dutch Science Foundation; and a grant from the British Research Council for Science and Engineering.

Nielsen says computer vision is still an exploratory field, moving in many different directions. Still, due to pressure from major medical equipment manufacturers, some areas are beginning to standardise—especially in the medical area.

Scientific communication is key to progress, says Nielsen. DSSCV has presented results in several scientific journals and conferences and held an open workshop with participants from the US and Japan. "We gained and provided valuable insights. The feedback has been good."

Looking ahead, Nielsen says, "We've done the deep mathematics. Now we'd like to do another project with other partners more involved in the practical issues, such as doctors and hospitals."

Contact:
Mads Nielsen
IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
Denmark
Tel: +45-72-185075
Fax: +45-72-185001
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Source: IST Results

Most Popular Now

Early Warning System for Intensive Care …

Life-threatening situations occur time and again in an intensive care unit. To make sure that doctors can intervene in time, a team at the German Heart Center Berlin (DHZB) has...

Virtual Reality could Help to Reduce Pai…

We all feel physical pain in different ways, but people with nerve injuries often have a dysfunctional pain suppression system, making them particularly prone to discomfort. Now researchers have uncovered that...

Philips Partners with Orbita to Develop …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Orbita Inc., an innovative provider of conversational artificial intelligence (AI) solutions for healthcare, announced a partnership agreement...

CliniSys Group Creates Single Brand for …

CliniSys Group has created a single brand for its businesses in the UK and Europe, with a refreshed logo and a new website. The move creates a unified identity for CliniSys...

East Lancashire Signs Deal for Early War…

Thousands of NHS professionals across five hospitals in East Lancashire are to benefit from early warning technology that will help them detect and swiftly respond to deteriorating patients in need...

FDA Grants Oxehealth Vital Signs De Novo…

Oxehealth has announced another world first after the US Food and Drug Administration granted a De Novo clearance for its Oxehealth Vital Signs product, which is incorporated into Oxevision, the...

Telemedicine Improves Access to High-Qua…

The American Academy of Sleep Medicine recently published an update on the use of telemedicine for the diagnosis and treatment of sleep disorders to reflect lessons learned from the transition...

DMEA 2021: Digital Health. 100 % Virtual…

7 - 11 June 2021, Berlin, Germany. An entire week dominated by digital healthcare! With that in mind, early in June DMEA 2021 will be kicking off with a wide range...

Philips and NHS Implement the First Regi…

Royal Philips (NYSE: PHG, AEX: PHIA), announced it has supported the NHS' Cheshire and Merseyside consortium [1] to become the first regional hub supplying the United Kingdom's National COVID-19 Chest...

Child Brain Tumours can be Classified by…

Diffusion weighted imaging and machine learning can successfully classify the diagnosis and characteristics of common types of paediatric brain tumours a UK-based multi-centre study, including WMG at the University of...

AI could Crack the Language of Cancer an…

Powerful algorithms used by Netflix, Amazon and Facebook can 'predict' the biological language of cancer and neurodegenerative diseases like Alzheimer's, scientists have found.