eHealth Policy and Research

ICT for HealthFor two decades the European Commission has contributed to the improvement of healthcare by supporting the research and development of new technologies that can change the way we get health treatment. With i2010, the Commission's strategic framework to create a European Information Society for growth and jobs, the focus is now on meeting the health care needs of our ageing population.

eHealth makes it possible for citizens to get quality health information and view their health records on line, even when travelling in Europe. Secure health networks, containing specific vital information about patients, can be accessed securely by health professionals in any EU Member State. eHealth does this and much more.

eHealth improves relations between patient and health-service administrations, by allowing institution-to-institution transmission of data, and peer-to-peer communication between patients and/or health professionals.

eHealth can also be thought of as health information networks, electronic health records, telemedicine services, and personal wearable, portable and communicable systems to monitor and support patients.

Developing the eHealth market
Today, many European countries and regions are world leaders in eHealth. They have developed advanced health information networks, electronic health records and health cards. See an example in the box below.

The size of the European eHealth industry is currently estimated at €20 billion. Yet there is still much untapped potential that needs to be encouraged.

The Commission has led a number of political initiatives to promote dialogue among healthcare administrations, industry and professionals in the EU Member States.

The eHealth Action Plan
As early as 2004 the Commission adopted an eHealth Action Plan to speed up the development and spread of eHealth systems.

The Member States were asked to draw up national or regional roadmaps for eHealth, define a common approach to patient identifiers, outline interoperability standards for health records and health data messages (the ability of different systems to 'talk to each other'), and support investment in eHealth. This has been done.

The focus is now on removing remaining obstacles to effective realisation of a single European market for eHealth applications, particularly by making sure different systems can exchange records and other information. It is also to deal with legal uncertainty, insufficient financial support and the absence of common procurement procedures.

Present and upcoming actions:

  • A Commission Recommendation on cross border interoperability of electronic health record systems was issued in July 2008;
  • Large scale pilots, supporting interoperability of health information systems across borders, for patient summaries and ePrescription of drugs, were launched in July in 12 member states;
  • Screen existing EU legislation related to eHealth, and provide guidelines for applying the legal framework to eHealth products and services;
  • Finalise studies on privacy and certification (conformity of testing standards for new devices and a common approach towards accreditation of health professionals);
  • Provide guidance on funding opportunities for R&D in EU through the 7th Framework programme (1), Structural Funds (2), or European Investment Bank initiatives (3);
  • Accelerate the creation of innovative eHealth markets through a collaborative initiative of several Commission DGs on lead markets;
  • Issue a Commission Communication on Telemedicine at the end of 2008.
  • Launch studies aimed at the analysis of existing business models for eHealth, and developing methodology to assess the effectiveness of telemedicine applications.
  • Continue to support monitoring eHealth development and deployment across Europe through specific studies and Member State consultations.

Research
To support the development of sustainable and personalised healthcare services for all Europeans, the EU devoted €174 million to healthcare research, related to information and communication technologies at the beginning of its overall research programme (FP7 2007-2013). These millions will be supplemented as FP7 continues, which has allowed a focus on three key elements:

1. Personalised monitoring (72 M€)
Innovative systems and services for monitoring the health status of people at risk or with chronic health conditions, including those associated with ageing. Solutions will be based on wearable or portable systems, enabling efficient management of diseases and early diagnoses of symptoms from a distance. Patients will be able to stay at home without being out of reach of healthcare.

2. Risk assessment and patient safety (30M€)
Advanced computerised systems to alert and prevent injuries or adverse events at an early stage. These include new tools for the prediction, detection and monitoring of impacts on patient safety, like hospital-acquired infections and medicinal side effects.

3. Computer models for personalised and predictive healthcare (72 M€)
Simulation environments for surgery training and planning, integrated biomedical information and imaging, that permits prediction of diseases or an early diagnosis, models and simulation environments for assessment of the efficacy and safety of specific drugs.

For further information:
ICT for Health
European Commission - Information Society and Media,
Office: BU31 06/41 B-1049 Brussels
Tel: +32 2 296 41 94, Fax: +32 2 296 01 81
http://ec.europa.eu/information_society/eHealth

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...