New FP7 eHealth Project - preDiCT

The preDiCT project officially launched 1 June 2008, with a mission to model, simulate, and ultimately predict the impact of pharmacological compounds on the heart's rhythm using computer models. This will require advances beyond the current state-of-the-art in:
  • Mathematical models of individual ion channels, which control how and when cells contract;
  • Tissue models, which encapsulate chemical processes and physical relationships at millions of separate points in the heart; and
  • The computer code, which must compute these relationships as a series of complex equations, to enable faster-than-real-time simulation of a beating heart.

Current best practice in pharmaceutical development relies on the Q-T interval (the spacing of two points on an electrocardiogram) as a proxy for potential danger. However, it is known that some drugs which fail this test do not lead to arrhythmia (e.g. Ranolazine, whose safety was demonstrated by the Oxford team). We hope to be able to develop more accurate gauges of potential cariotoxicity.

About 40% of drug candidates fail to come to market due to adverse impact on heart rhythm. preDiCT project hope to achieve better understanding of the underlying mechanisms, which may lead to refinement of the drug development process to avoid these side effects.

By extending the frontiers of "in silico" experimentation, the proposed project will enable future researchers to refine, replace and ultimately reduce the use of animals in pharmaceutical and other cardiac research.

The preDiCT project is embedded in the broader VPH initiative, with direct links to two other FP7-funded VPH projects: The Integrating Project euHeart, which will focus on patient-specific simulation for treatment of cardiovascular disease (17 partners, jointly coordinated by the Philips Technology Research Laboratory and the University of Oxford) and the Virtual Physiological Human Network of Excellence, a service to the community of VPH researchers (13 core partners plus broader membership, jointly coordinated by University College London and the University of Oxford).

For further information, please visit:
http://www.vph-predict.eu

Related article:

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...