New FP7 eHealth Project - preDiCT

The preDiCT project officially launched 1 June 2008, with a mission to model, simulate, and ultimately predict the impact of pharmacological compounds on the heart's rhythm using computer models. This will require advances beyond the current state-of-the-art in:
  • Mathematical models of individual ion channels, which control how and when cells contract;
  • Tissue models, which encapsulate chemical processes and physical relationships at millions of separate points in the heart; and
  • The computer code, which must compute these relationships as a series of complex equations, to enable faster-than-real-time simulation of a beating heart.

Current best practice in pharmaceutical development relies on the Q-T interval (the spacing of two points on an electrocardiogram) as a proxy for potential danger. However, it is known that some drugs which fail this test do not lead to arrhythmia (e.g. Ranolazine, whose safety was demonstrated by the Oxford team). We hope to be able to develop more accurate gauges of potential cariotoxicity.

About 40% of drug candidates fail to come to market due to adverse impact on heart rhythm. preDiCT project hope to achieve better understanding of the underlying mechanisms, which may lead to refinement of the drug development process to avoid these side effects.

By extending the frontiers of "in silico" experimentation, the proposed project will enable future researchers to refine, replace and ultimately reduce the use of animals in pharmaceutical and other cardiac research.

The preDiCT project is embedded in the broader VPH initiative, with direct links to two other FP7-funded VPH projects: The Integrating Project euHeart, which will focus on patient-specific simulation for treatment of cardiovascular disease (17 partners, jointly coordinated by the Philips Technology Research Laboratory and the University of Oxford) and the Virtual Physiological Human Network of Excellence, a service to the community of VPH researchers (13 core partners plus broader membership, jointly coordinated by University College London and the University of Oxford).

For further information, please visit:
http://www.vph-predict.eu

Related article:

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...