New FP7 eHealth Project - preDiCT

The preDiCT project officially launched 1 June 2008, with a mission to model, simulate, and ultimately predict the impact of pharmacological compounds on the heart's rhythm using computer models. This will require advances beyond the current state-of-the-art in:
  • Mathematical models of individual ion channels, which control how and when cells contract;
  • Tissue models, which encapsulate chemical processes and physical relationships at millions of separate points in the heart; and
  • The computer code, which must compute these relationships as a series of complex equations, to enable faster-than-real-time simulation of a beating heart.

Current best practice in pharmaceutical development relies on the Q-T interval (the spacing of two points on an electrocardiogram) as a proxy for potential danger. However, it is known that some drugs which fail this test do not lead to arrhythmia (e.g. Ranolazine, whose safety was demonstrated by the Oxford team). We hope to be able to develop more accurate gauges of potential cariotoxicity.

About 40% of drug candidates fail to come to market due to adverse impact on heart rhythm. preDiCT project hope to achieve better understanding of the underlying mechanisms, which may lead to refinement of the drug development process to avoid these side effects.

By extending the frontiers of "in silico" experimentation, the proposed project will enable future researchers to refine, replace and ultimately reduce the use of animals in pharmaceutical and other cardiac research.

The preDiCT project is embedded in the broader VPH initiative, with direct links to two other FP7-funded VPH projects: The Integrating Project euHeart, which will focus on patient-specific simulation for treatment of cardiovascular disease (17 partners, jointly coordinated by the Philips Technology Research Laboratory and the University of Oxford) and the Virtual Physiological Human Network of Excellence, a service to the community of VPH researchers (13 core partners plus broader membership, jointly coordinated by University College London and the University of Oxford).

For further information, please visit:
http://www.vph-predict.eu

Related article:

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...