New FP7 eHealth Project - preDiCT

The preDiCT project officially launched 1 June 2008, with a mission to model, simulate, and ultimately predict the impact of pharmacological compounds on the heart's rhythm using computer models. This will require advances beyond the current state-of-the-art in:
  • Mathematical models of individual ion channels, which control how and when cells contract;
  • Tissue models, which encapsulate chemical processes and physical relationships at millions of separate points in the heart; and
  • The computer code, which must compute these relationships as a series of complex equations, to enable faster-than-real-time simulation of a beating heart.

Current best practice in pharmaceutical development relies on the Q-T interval (the spacing of two points on an electrocardiogram) as a proxy for potential danger. However, it is known that some drugs which fail this test do not lead to arrhythmia (e.g. Ranolazine, whose safety was demonstrated by the Oxford team). We hope to be able to develop more accurate gauges of potential cariotoxicity.

About 40% of drug candidates fail to come to market due to adverse impact on heart rhythm. preDiCT project hope to achieve better understanding of the underlying mechanisms, which may lead to refinement of the drug development process to avoid these side effects.

By extending the frontiers of "in silico" experimentation, the proposed project will enable future researchers to refine, replace and ultimately reduce the use of animals in pharmaceutical and other cardiac research.

The preDiCT project is embedded in the broader VPH initiative, with direct links to two other FP7-funded VPH projects: The Integrating Project euHeart, which will focus on patient-specific simulation for treatment of cardiovascular disease (17 partners, jointly coordinated by the Philips Technology Research Laboratory and the University of Oxford) and the Virtual Physiological Human Network of Excellence, a service to the community of VPH researchers (13 core partners plus broader membership, jointly coordinated by University College London and the University of Oxford).

For further information, please visit:
http://www.vph-predict.eu

Related article:

Most Popular Now

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...