Launch of the European Research Project CARS Explorer

The CARS Explorer project, coordinated by Didier Marguet from the French National Institute for Health and Medical Research (Inserm Unit 631, CIML, Marseille), was officially launched in April in Marseille, France. CARS Explorer is a collaborative research project funded by the European Commission under the Health priority of the 7th Framework Programme. This highly interdisciplinary consortium brings together internationally renowned physicists, biologists and clinicians of six institutional bodies from four European countries and a French SME.

Financed for three years, CARS Explorer seeks to demonstrate the concept of innovative light-based contrasting technologies for functional in situ imaging in life science and biomedical research. The ultimate goal of the consortium is to develop an endoscope based on non-linear optics (NLO) and laser pulse phase shaping.

Today, NLO technologies allow primarily low-depth exploration. However, they present major opportunities at the morphological and molecular level which makes it an original tool for biomedical analysis without requiring preliminary sample preparation, thus providing real time information to the patients.

To bring the concept to the diagnostic level, Cars Explorer partners will explore the molecular and morphological NLO signatures associated with tumour development in skin cancer, one of the fastest growing cancers in Europe with an incidence increase of 5 to 7 % a year. (Source: Ligue contre le Cancer). The consortium will concentrate its efforts on the so designated Coherent Anti-Stokes Raman Scattering (CARS) microscopy technique which permits to produce real time 3D images of cells and tissues at a molecular level, without any labelling or staining.

The development of this novel imaging technology will allow an efficient use of our knowledge of cancer molecular modifications. Indeed, this project will have a major strategic and economic impact by providing a non-invasive functional exploration method for clinical research and treatment, in particular for the prevention, diagnosis and monitoring of cancer. In the end, "an imaging technology capable of providing in vivo information both at the cellular and molecular level would be an outstanding and decisive breakthrough. It is certain that such approaches will play an increasingly central part in oncology and clinical research as well in the treatment of patients affected by cancer" says Didier Marguet.

The CARS Explorer consortium is coordinated by the French National Institute for the Health and Medical research (Inserm) and includes the French National Centre for Scientific Research (CNRS), the de Duve Institute (Belgium), the University of Stuttgart (Germany), the University of Bath (UK), Mauna Kea Technologies SAS (a French SME specialised in minimally-invasive biomedical imaging) and Inserm Transfert SA (France).

For further information, please visit:
http://www.carsexplorer.eu

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...