IBM and ETH Scientists Advance Supercomputing Simulations to Improve Diagnosis of Osteoporosis

IBM (NYSE: IBM)Using a Blue Gene supercomputer, scientists of the Swiss Federal Institute of Technology Zurich (ETH) and the IBM (NYSE: IBM) Zurich Research Laboratory demonstrated the most extensive simulation yet of real human bone structures, providing doctors a "high definition" view of the strength and fragility of bones they never had before. This achievement could lead to better clinical tools to improve the diagnosis and treatment of osteoporosis, a widespread disease that affects 1 in 3 women and 1 in 5 men over the age of 50.(1)

The early detection of osteoporosis is crucial in order to prevent its progress. This breakthrough simulation could greatly enhance a clinician's ability to better treat fractures and analyze and detect osteoporotic fragility, in order to take preventative measures before osteoporosis advances in patients.

Osteoporosis is the most widespread bone disease worldwide, affecting 75 million people in the US, Europe and Japan alone, and causing health costs second only to those associated with cardiovascular diseases. Literally "porous bone," this disease is characterized by loss of bone density, resulting in a high risk of fractures, and is a major cause of pain, disability and death in older persons.(2) Unfortunately, in many cases, osteoporosis is not diagnosed until a fracture has occurred, but by then the disease is already in an advanced stage, requiring implants or surgical plates to treat or prevent further fractures.

Today, osteoporosis is diagnosed by measuring bone mass and density using specialized X-ray or computer tomography techniques - a highly empirical process. Studies have shown, however, that bone mass measurements are only a moderately accurate way to determine the strength of the bone because bones are not solid structures. Inside the compact outer shell, bones have a sponge-like center. This complex microstructure accounts for the bone's capability to bear loads and therefore represents a better indicator of a bone's true strength.

Aiming for an accurate, powerful and fast method to automate the analysis of bone strength, scientists of the Departments of Mechanical and Process Engineering and Computer Science at ETH Zurich teamed up with supercomputing experts of IBM's Zurich Research Laboratory. The breakthrough method they developed combines density measurements with a large-scale mechanical analysis of the inner-bone microstructure.

Using large-scale, massively parallel simulations, the researchers were able to obtain a dynamic "heat map" of strain, which changes with the load applied to the bone. This map shows the clinician exactly where and under what load a bone is likely to fracture.

"Knowing when and where a bone is likely to fracture, a clinician can also detect osteoporotic damage more precisely and, by adjusting a surgical plate appropriately, can determine its optimal location," explains Dr. Costas Bekas of IBM's Computational Sciences team in Zurich. "This work is an excellent example of the dramatic potential that supercomputers can have for our everyday lives."

Utilizing the massively large-scale capabilities of the 8-rack Blue Gene /L supercomputer, the research team was able to conduct the first simulations on a 5 by 5 mm specimen of real bone. In just 20 minutes of computing time, the supercomputer simulation generated 90 Gigabytes of output data.

"It is this combination of increased speed and size that will allow solving clinically relevant cases in acceptable time and unprecedented detail," says Professor Ralph Müller, the director of the Institute for Biomechanics at ETH Zürich.

"Ten years from now, the performance of today's supercomputers will become available in desktop systems, making such simulations of bone strength a routine practice in computer tomography," predicts Dr. Alessandro Curioni, manager of the Computational Sciences group at IBM's Zurich Research Laboratory.

Professor Peter Arbenz of the Institute of Computational Science, who initiated the collaboration among the involved groups, explains that state of the art numerical algorithms were also necessary to solve these extremely large problems in this surprisingly short time. This work is the first fundamental step towards a clinical use of large scale bone simulations. "We are at the beginning of an exciting journey and we need to further continue this line of research in order to achieve this goal," he states.

In future work, IBM and ETH scientists plan to aim to advance their simulation techniques to go beyond the calculation of static bone strength and to be able to simulate the actual formation of the fractures for individual patients, thereby taking another step towards achieving a fast, reliable and early detection of people with high fracture risk.

The work "Extreme Scalability Challenges in Analyses of Human Bone Structures" by ETH scientists Peter Arbenz, Cyril Flaig, Harry van Lenthe, Ralph Mueller, Andreas Wirth and IBM Zurich Research Lab scientists Costas Bekas and Alessandro Curioni was presented at the IACM/ECCOMAS 2008 conference in Venice, Italy, on July 2.

About ETH Zurich
ETH Zurich (Swiss Federal Institute of Technology Zurich) has a student body of 14,000 students from 80 nations. Nearly 360 professors teach mainly in engineering sciences and architecture, system-oriented sciences, mathematics and natural sciences, as well as carry out research that is highly valued worldwide. On a yearly basis, ETH Zurich applies for 80-100 patents and directly supports the founding of up to 20 spinoff companies. Distinguished by the successes of 21 Nobel laureates, ETH Zurich is committed to providing its students unparalleled education and outstanding leadership skills. The Platform of Micro and Nano Sciences is a competence center at ETH Zurich, connecting the expertise of 43 research groups from nine departments.

About IBM Research
For more information about IBM Research, visit www.ibm.com/Research.

Related news articles:

(1) International Osteoporosis Foundation, http://www.iofbonehealth.org/
(2) Prevention and Management of Osteoporosis , WHO Technical Report Series, No. 921

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...