Simulating Surgery to Reduce Implant Complications

A computer simulation breakthrough could mean fewer medical complications and better surgical outcomes for patients undergoing hip, knee or spinal implant surgery. Each year surgeons across Europe perform a staggering 900,000 hip, knee and spinal implant operations. Implant surgery is one of the most remarkable advances in medical science. Such operations restore increased mobility and a vastly improved quality of life to millions of Europeans.

Implant surgery also has one of the most remarkable success rates in medical practice, with reliable, predictable outcomes and very few complications. But it is not complication free.

"About 10 per cent of operations have complications, often requiring a new implant, or a further surgery," explains Dr. Ing. Ruben Lafuente, technical manager of the Spanish IT consulting firm Adapting S.L. and co-ordinator of the OrthoSim project. "It means increased pain and inconvenience, a drain on human resources and of course it is expensive, too."

Enter the EU-funded OrthoSim project. Set up to develop an orthopaedic surgery planning tool, OrthoSim has developed a platform that can significantly reduce the risk of post-op complications, as well as provide a means for testing new implant devices, the researchers claim. And in the very near future the platform will provide the base for a new surgical training tool.

Simulating the interface
The OrthoSim platform is a system using computer software to create anatomical and implant simulations. The simulation models are based on the work of two leading European biomechanics research centres.

"Our lumbar spinal region model is the result of over 20 years of research at the Laboratoire de Biomecanique of L'Ecole Nationale Superieure d'Arts et Metiers in Paris," explains Lafuente. "It was enhanced and complemented by a lumbar implant model provided by the Instituto de Biomecánica de Valencia in Spain."

These models were combined to provide a reliable simulation of the interface between the artificial implant and the living tissue, providing surgeons with vital pre-op information.

"With this service, a surgeon or implant engineer can effectively call on the expertise of the best people in any field of orthopaedic surgery, where biomechanical simulation can offer new insights for patient care," Lafuente says.

Even better, the tool can be used to study the suitability of new implant devices and can help pinpoint any problems with the design at an early stage.

"Implant designers get the opportunity to test their new designs initially without the need for actual implantations," notes Lafuente. "It will mean better implant designs at an early stage, cutting costs and research time, as well as improving outcomes early on."

Solving the integration problem
The models are linked together and are hosted at an online service. Integrating the various models and algorithms into a unified platform was a difficult computer science problem to solve.

"We had to work very hard to get the protocols right and we spent a lot of time developing the user interface, too," says Lafuente. "We wanted to make the service as simple to use as possible."

The OrthoSim project ended in March last year, with the research team successfully combining the various elements of the project. Since then the partners have been developing the service offering further and are looking for financial support.

"Initially we had a model just for lumbar spine implants, but in the last months we have almost completed a validated model for hip implants," says Lafuente. "We believe that once we finish perfecting a model for knee implants we will have a very strong set of tools to offer surgeons."

But Lafuente warns that developing new products for the health market is a very difficult task in itself.

"The quality assurance and validation issues are very important in healthcare directed products, and will require more work," he says.

That work continues. A follow-on project, called OrthoTraining, is taking the OrthoSim toolset a step further. Over the next two years OrthoTraining’s researchers plan to develop a surgical training tool based on OrthoSim's work.

"It will enhance training for students and it will mean that newly qualified surgeons will have better training and an enhanced skill set," Lafuente says. "This will improve the medical services and quality of life of European citizens."

OrthoSim was funded under the EU's eTEN programme for market validation and implementation.

For further information, please visit:
http://www.orthosim.com/

Source: ICT Results Portal

About orthoSIM
orthoSIM is The European Simulation Service Provider for Orthopaedic Surgery. It aims at consolidating in the next years as the leading simulation service provider in Europe for orthopaedic-related problems. orthoSIM delivers added-value services around its main offer: virtual preoperative analyses of the behaviour of an orthopaedic implant after implantation in a customized implant-patient configuration. For more information, please visit www.orthosim.com.

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Computer Models Open Door to Far Mor…

With antibiotic resistance a growing problem, University of Virginia School of Medicine researchers have developed cutting-edge computer models that could give the disease-fighting drugs a laser-like precision to target only...

New Biomarkers to Detect Colorectal Canc…

Machine learning and artificial intelligence (AI) techniques and analysis of large datasets have helped University of Birmingham researchers to discover proteins that have strong predictive potential for colorectal cancer. In a...

Sam Neville Joins the Highland Marketing…

Leading chief nursing information officer Sam Neville is joining the Highland Marketing advisory board. Sam brings a passion for nursing and safety to the board, which debates the big issues...

AI Model Identifies Potential Risk Genes…

Researchers from the Cleveland Clinic Genome Center have successfully applied advanced artificial intelligence (AI) genetics models to Parkinson's disease. Researchers identified genetic factors in progression and FDA-approved drugs that can...

AI Tool that may Assist Underserved Hosp…

As the fields of healthcare and technology increasingly evolve and intersect, researchers are collaborating on the best ways to use emerging technologies such as artificial intelligence (AI) to care for...

AI-Supported Breast Cancer Screening - N…

The new findings are published in The Lancet Digital Health. The initial results of the Mammography Screening with Artificial Intelligence (MASAI) study* - a randomised trial to evaluate whether AI...

AI Improves Personalized Cancer Treatmen…

Personalized medicine aims to tailor treatments to individual patients. Until now, this has been done using a small number of parameters to predict the course of a disease. However, these...