New FP7 eHealth Project - COMOESTAS

COMOESTAS aims to develop an innovative ICT system that allows patients with Medication Overuse Headache (MOH), a common condition and a major cause of disability, to receive continuous and personalised treatment. The system will be based on an advanced Alerting and Decision Support System that follows patients from the diagnosis and supports the physician in managing the therapy, controlling relevant events impacting on patient safety.

Medication Overuse Headache (MOH) results from the chronicisation of primary forms of headaches, as a consequence of the progressive increase in the intake of symptomatic drugs. The first choice treatment for MOH is the withdrawal of the overused medication(s) (detoxification), which is preferentially done by hospitalising the patients. Even if most patients improve as a result of detoxification, up to 45% of patients relapse, reverting to the overuse of symptomatic drugs.

Paper diaries and calendars for recording headache attacks have long been used in the clinical practice for the management of headache patients. Isolated attempts to electronically record headache attacks have also been performed, based on the use of single common files.

At present, however, there is no scientifically validated informative tool that could manage patient's treatment, from the first observation to the whole follow-up. The availability of such a tool would grant an innovative approach to MOH.

Objectives of the project and project description
The general objective of the COMOESTAS project is to improve and integrate the management of MOH with an innovative electronic tool that makes the patient himself a key node in the treatment process. The new system, will be based on a complex informative system called Interactive Electronic Patient Record (IEPR) and will constitute an "all-inone" solution that will allow constant monitoring of the clinical condition of the patient by the doctor and provide a system of alerts and warnings should selected parameters exceed given thresholds. The system will also be designed in order to improve the patientdoctor communication.

Expected Results and Impacts
The constant monitoring by means of the electronic diary and programmed or alertprompted follow-up visits permit and favour a better interaction between patient and physician in order to ameliorate the management of these patients after the withdrawal. Furthermore, this will increase patient safety by optimising medical interventions, preventing errors and reducing drug-induced side effects (i.e. gastritis, hypertension). As a consequence, direct (consultations, hospitalisations, etc.) and indirect (i.e. linked to the disability and complications caused by the disease) costs provoked by the condition will be reduced.

Work in progress

  • The kick-off meeting took place in Pavia, on February 14-16
  • Indicators, clinical protocol and clinical tools have been devised, and will be finalised in April
  • The beta version of the IEPR system will be ready for pilot testing by the end of May
  • Clinical centres in Argentina and Chile are collecting data on the epidemiological impact of MOH in Latin America

For further information, please visit:
http://www.comoestas-project.eu

Related article:

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...