IMPPACT

IMPPACT (Image-based multi-scale physiological planning for ablation cancer treatment) will develop an intervention planning and monitoring application for Radiofrequency Ablation (RFA) of malignant liver tumours. RFA is a minimally invasive form to treat cancer without open surgery, by placing a needle inside the malignancy and destroying it through intensive heating. Though the advantages of this approach are obvious, the intervention is currently hard to plan, almost impossible to monitor or assess, and therefore is not the first choice for treatment.

IMPPACT will develop a physiological model of the liver and simulate the intervention's result, accounting for patient specific physiological factors. Gaps in the understanding of particular aspects of the RFA treatment will be closed by multi-scale studies on cells and animals. New findings will be evaluated microscopically and transformed into macroscopic equations. The long-established bio-heat equation will be extended to incorporate multiple scales. Validation will be performed at multiple levels. Images from ongoing patient treatment will be used to cross check validity for human physiology. Final validation will be performed at macroscopic level through visual comparison of simulation and treatment results gathered in animal studies and during patient treatment.

This extensive validation together with a user-centred software design approach will guarantee suitability of the solution for clinical practice. The consortium consists of two Hospitals, three Universities, one Research Institute and one industrial SME. The final project deliverables will be the patient specific intervention planning system and an augmented reality training simulator for the RFA intervention.

For further information, please visit:
http://imppact.icg.tugraz.at/

Project co-ordinator:
Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. (Germany)

Partners:

  • NUMA Engineering Services Ltd (Ireland)
  • Universität Leipzig (Germany)
  • Chancellor, Masters and Scholars of the University of Oxford (United Kingdom)
  • Medizinische Universität Graz (Austria)
  • TKK - Teknillinen korkeakoulu (Finland)
  • Technische Universität Graz (Austria)

Timetable: from 09/2008 - to 08/2011

Total cost: € 4.550.000

EC funding: € 3.460.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Early Warning System for Intensive Care …

Life-threatening situations occur time and again in an intensive care unit. To make sure that doctors can intervene in time, a team at the German Heart Center Berlin (DHZB) has...

Philips Partners with Orbita to Develop …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Orbita Inc., an innovative provider of conversational artificial intelligence (AI) solutions for healthcare, announced a partnership agreement...

CliniSys Group Creates Single Brand for …

CliniSys Group has created a single brand for its businesses in the UK and Europe, with a refreshed logo and a new website. The move creates a unified identity for CliniSys...

East Lancashire Signs Deal for Early War…

Thousands of NHS professionals across five hospitals in East Lancashire are to benefit from early warning technology that will help them detect and swiftly respond to deteriorating patients in need...

FDA Grants Oxehealth Vital Signs De Novo…

Oxehealth has announced another world first after the US Food and Drug Administration granted a De Novo clearance for its Oxehealth Vital Signs product, which is incorporated into Oxevision, the...

Telemedicine Improves Access to High-Qua…

The American Academy of Sleep Medicine recently published an update on the use of telemedicine for the diagnosis and treatment of sleep disorders to reflect lessons learned from the transition...

Philips and NHS Implement the First Regi…

Royal Philips (NYSE: PHG, AEX: PHIA), announced it has supported the NHS' Cheshire and Merseyside consortium [1] to become the first regional hub supplying the United Kingdom's National COVID-19 Chest...

AI could Crack the Language of Cancer an…

Powerful algorithms used by Netflix, Amazon and Facebook can 'predict' the biological language of cancer and neurodegenerative diseases like Alzheimer's, scientists have found.

DMEA 2021: Digital Health. 100 % Virtual…

7 - 11 June 2021, Berlin, Germany. An entire week dominated by digital healthcare! With that in mind, early in June DMEA 2021 will be kicking off with a wide range...

X-Rays Combined with AI Offer Fast Diagn…

X-rays, first used clinically in the late 1890s, could be a leading-edge diagnostic tool for COVID-19 patients with the help of artificial intelligence, according to a team of researchers in...

Predicting COVID-19 Outbreaks with Cell …

Mobility tracking using cell phone data showing greater movement of people is a strong predictor of increased rates of COVID-19, according to new data in CMAJ (Canadian Medical Association Journal).