preDiCT

Many drugs fail to reach the market because of side effects on the heart. The principal objective of this proposal is to create an advanced computational technology for in silico assessment of the efficacy and safety of specific drugs [ICT-2007.5.3(c) (3)], i.e. an open environment comprising validated computational models, tools and numerical methods that will enable simulations of drug actions on the electrophysiology of the human heart.

Such simulations will involve modelling of drug interactions at the molecular and cellular level, will extend current technology to enable prediction of the effects of those interactions on the dynamics of the whole heart, and will lead to an understanding of how genetic factors can be used to assess patient-specific risk profiles. This requires a multi-level systems approach, based on multi-scale, multi-physics methods, including computations on adaptive spatial grids and multi-grid time integration. Computations on realistic models at appropriate spatial and temporal scales are currently not feasible, so we will investigate new algorithms and their implementation on high-performance platforms, including a new generation of petaflop computers, to achieve 'faster than real-time' simulation.

These tools form part of the infrastructure required to simulate the physiology of major organ systems, thereby contributing to the goal of creating the Virtual Physiological Human (VPH) [ICT-2007.5.3]. The balanced team in this project, including founders of the Human Physiome Project, has decades of experience in the experimental study and modelling of the electrophysiology and mechanics of the heart, while pharmaceutical industry partners bring deep understanding of the mechanisms of drug actions. The results will demonstrate the value of the VPH initiative to fundamental scientific understanding of the heart, with major economic and clinical impacts through accelerated drug development, approval and use.

For further information, please visit:
http://www.vph-predict.eu

Project co-ordinator:
The Chancellor, Master and Scholars of the University of Oxford

Partners:

  • F. Hoffmann-La Roche AG
  • Szegedi Tudományegyetem
  • Fujitsu Laboratories of Europe Limited
  • Glaxo Smithkline Research and Development
  • Universidad Politécnica de Valencia
  • Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna
  • Novartis Pharma AG
  • Aureus Pharma SA

Timetable: from 06/2008 – to 05/2011

Total cost: € 5.545.692

EC funding: € 4.100.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...