euHeart

Cardiovascular disease (CVD) has a significant impact on the European society in terms of mortality, morbidity and allied healthcare costs. The opportunity of multi-scale modelling spanning, sub-cellular level up to whole heart is to improve CVD outcomes by providing a consistent, biophysically-based framework for the integration of the huge amount of fragmented and inhomogeneous data currently available. However, multi-scale models have not yet been translated into clinical environments mainly due to the difficulty of personalising biophysical models. The challenge of the euHeart project is to directly address this need by combining novel ICT technologies with integrative multi-scale computational models of the heart in clinical environments to improve diagnosis, treatment planning and interventions for CVD.

To meet this challenge we will bring together leading European physiological modelling and cardiac groups to develop, integrate and clinically validate patient-specific computational models of the cardiac physiology and disease-related processes. The main outcome of euHeart will be an open source framework for the description and representation of normal and pathological multi-scale and multi-physics cardiovascular models, using the international encoding standards. In addition, a library of innovative tools for the execution of the biophysical simulations, the personalisation of the models and the automated analysis of multi-modal images are developed.

Evidence of clinical benefit will be collected to quantify potential impact for a number of significant CVD's namely, heart failure, cardiac rhythm disorder, coronary artery disease and valvular and aortic diseases. Each of the selected clinical applications provides a complementary focus for the resulting integrated model of cardiac fluid-electro-mechanical function. The consortium contains a mix of academic leadership, clinical sites, and industrial partners ensuring exploitation of the wealth of models.

For further information, please visit:
http://www.euheart.org

Project co-ordinator:
Philips Technologie GmbH

Partners:

  • INRIA, Institut National de Recherche en Informatique et en Automatique
  • King's College London
  • Academisch Medisch Centrum bij de Universiteit van Amsterdam
  • Polydimensions GmbH
  • Universitat Pompeu Fabra
  • The University of Sheffield
  • Hospital Clinico San Carlos de Madrid Insalud
  • Philips Iberica S.A.
  • Institut National de la Santé et de la Recherche Médicale (INSERM)
  • Volcano Europe SA/NV
  • The Chancellor, Master and Scholars of the University of Oxford
  • HemoLab B.V.
  • Deutsche Krebsforschungszentrum (DKFZ)
  • Berlin Heart GmbH
  • Universität Karlsruhe (Technische Hochschule)
  • Philips Medical Systems Nederland BV

Timetable: from 06/2008 – to 05/2012

Total cost: € 19.053.465

EC funding: € 13.900.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...

AI can Strengthen Pandemic Preparedness

How to identify the next dangerous virus before it spreads among people is the central question in a new Comment in The Lancet Infectious Diseases. In it, researchers discuss how...

New AI Tool Scans Social Media for Hidde…

A new artificial intelligence tool can scan social media data to discover adverse events associated with consumer health products, according to a study published September 30th in the open-access journal...

'Future-Guided' AI Improves Se…

In the world around us, many things exist in the context of time: a bird’s path through the sky is understood as different positions over a period of time, and...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...