euHeart

Cardiovascular disease (CVD) has a significant impact on the European society in terms of mortality, morbidity and allied healthcare costs. The opportunity of multi-scale modelling spanning, sub-cellular level up to whole heart is to improve CVD outcomes by providing a consistent, biophysically-based framework for the integration of the huge amount of fragmented and inhomogeneous data currently available. However, multi-scale models have not yet been translated into clinical environments mainly due to the difficulty of personalising biophysical models. The challenge of the euHeart project is to directly address this need by combining novel ICT technologies with integrative multi-scale computational models of the heart in clinical environments to improve diagnosis, treatment planning and interventions for CVD.

To meet this challenge we will bring together leading European physiological modelling and cardiac groups to develop, integrate and clinically validate patient-specific computational models of the cardiac physiology and disease-related processes. The main outcome of euHeart will be an open source framework for the description and representation of normal and pathological multi-scale and multi-physics cardiovascular models, using the international encoding standards. In addition, a library of innovative tools for the execution of the biophysical simulations, the personalisation of the models and the automated analysis of multi-modal images are developed.

Evidence of clinical benefit will be collected to quantify potential impact for a number of significant CVD's namely, heart failure, cardiac rhythm disorder, coronary artery disease and valvular and aortic diseases. Each of the selected clinical applications provides a complementary focus for the resulting integrated model of cardiac fluid-electro-mechanical function. The consortium contains a mix of academic leadership, clinical sites, and industrial partners ensuring exploitation of the wealth of models.

For further information, please visit:
http://www.euheart.org

Project co-ordinator:
Philips Technologie GmbH

Partners:

  • INRIA, Institut National de Recherche en Informatique et en Automatique
  • King's College London
  • Academisch Medisch Centrum bij de Universiteit van Amsterdam
  • Polydimensions GmbH
  • Universitat Pompeu Fabra
  • The University of Sheffield
  • Hospital Clinico San Carlos de Madrid Insalud
  • Philips Iberica S.A.
  • Institut National de la Santé et de la Recherche Médicale (INSERM)
  • Volcano Europe SA/NV
  • The Chancellor, Master and Scholars of the University of Oxford
  • HemoLab B.V.
  • Deutsche Krebsforschungszentrum (DKFZ)
  • Berlin Heart GmbH
  • Universität Karlsruhe (Technische Hochschule)
  • Philips Medical Systems Nederland BV

Timetable: from 06/2008 – to 05/2012

Total cost: € 19.053.465

EC funding: € 13.900.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

MEDICA 2024 and COMPAMED 2024: Medical T…

11 - 14 November 2024, Düsseldorf, Germany. "Meet Health. Future. People." is MEDICA's campaign motto for the future in the new trade fair year 2025. The aptness of the motto...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...