euHeart

Cardiovascular disease (CVD) has a significant impact on the European society in terms of mortality, morbidity and allied healthcare costs. The opportunity of multi-scale modelling spanning, sub-cellular level up to whole heart is to improve CVD outcomes by providing a consistent, biophysically-based framework for the integration of the huge amount of fragmented and inhomogeneous data currently available. However, multi-scale models have not yet been translated into clinical environments mainly due to the difficulty of personalising biophysical models. The challenge of the euHeart project is to directly address this need by combining novel ICT technologies with integrative multi-scale computational models of the heart in clinical environments to improve diagnosis, treatment planning and interventions for CVD.

To meet this challenge we will bring together leading European physiological modelling and cardiac groups to develop, integrate and clinically validate patient-specific computational models of the cardiac physiology and disease-related processes. The main outcome of euHeart will be an open source framework for the description and representation of normal and pathological multi-scale and multi-physics cardiovascular models, using the international encoding standards. In addition, a library of innovative tools for the execution of the biophysical simulations, the personalisation of the models and the automated analysis of multi-modal images are developed.

Evidence of clinical benefit will be collected to quantify potential impact for a number of significant CVD's namely, heart failure, cardiac rhythm disorder, coronary artery disease and valvular and aortic diseases. Each of the selected clinical applications provides a complementary focus for the resulting integrated model of cardiac fluid-electro-mechanical function. The consortium contains a mix of academic leadership, clinical sites, and industrial partners ensuring exploitation of the wealth of models.

For further information, please visit:
http://www.euheart.org

Project co-ordinator:
Philips Technologie GmbH

Partners:

  • INRIA, Institut National de Recherche en Informatique et en Automatique
  • King's College London
  • Academisch Medisch Centrum bij de Universiteit van Amsterdam
  • Polydimensions GmbH
  • Universitat Pompeu Fabra
  • The University of Sheffield
  • Hospital Clinico San Carlos de Madrid Insalud
  • Philips Iberica S.A.
  • Institut National de la Santé et de la Recherche Médicale (INSERM)
  • Volcano Europe SA/NV
  • The Chancellor, Master and Scholars of the University of Oxford
  • HemoLab B.V.
  • Deutsche Krebsforschungszentrum (DKFZ)
  • Berlin Heart GmbH
  • Universität Karlsruhe (Technische Hochschule)
  • Philips Medical Systems Nederland BV

Timetable: from 06/2008 – to 05/2012

Total cost: € 19.053.465

EC funding: € 13.900.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...