PSIP

Adverse Drug Events (ADE) due to product safety problems, and medication errors due to human factors (HF) are a major Public Health issue. They endanger the patients¿ safety and originate considerable extra hospital costs. Healthcare ICT applications should help reducing the prevalence of preventable ADE, by providing healthcare professionals and patients with relevant knowledge (guidelines, recommendations, etc.).

But their efficiency is impeded by two major drawbacks:

  • lack of reliable knowledge about ADE
  • poor ability of ICT solutions to deliver contextualised knowledge focused on the problem at hand, aggravated by a poor consideration of causative HF.

The objective of the project Patient Safety through Intelligent Procedures in Medication (PSIP) is (1) to facilitate the systematic production of epidemiological knowledge on ADE and (2) to ameliorate the entire medication cycle in a hospital environment.

The first sub-objective, SO, is to innovatively produce knowledge on ADE: to know, as exactly as possible, per hospital, their number, type, consequences and causes, including HF. Data Mining of the structured hospital data bases, and Semantic Mining of Data Collections of free-texts (letters, reports), will give a list of observed ADEs, with frequencies and probabilities, thus giving a better understanding of potential risks.

The second SO is to develop a set of innovative knowledge based on the mining results and to deliver a contextualised knowledge fitting the local risk parameters, in the form of alerts and decision support functions. This knowledge will be implemented in a PSIP-platform independently of existing ICT applications. These applications will connect to the platform to access and integrate the knowledge in their local system. The design and development cycle of the PSIP solution will be HF oriented.

Dissemination plans will be developed taking into account other uses (medical devices, primary and tertiary Healthcare).

For further information, please visit:
http://www.psip-project.eu

Project co-ordinator:
CENTRE HOSPITALIER REGIONAL ET UNIVERSITAIRE DE LILLE

Partners:

  • KITE SOLUTIONS S.N.C. DI DUNNE CATHERINE E C.
  • AALBORG UNIVERSITET
  • ORACLE FRANCE SAS
  • REGION HOVEDSTADEN
  • IBM DANMARK A/S
  • CENTRE HOSPITALIER DE DENAIN
  • VIDAL S.A.
  • IDEEA ADVERTISING SRL
  • EVALAB
  • MEDASYS SA
  • CENTRE HOSPITALIER UNIVERSITAIRE DE ROUEN
  • ARISTOTLE UNIVERSITY OF THESSALONIKI
  • UMIT - PRIVATE UNIVERSITAET FUER GESUNDHEITSWISSENSCHAFTEN, MEDIZINISCHE INFORMATIK UND TECHNIK GESELLSCHAFT MBH

Timetable: from 01/2008 – to 04/2011

Total cost: € 9.946.770

EC funding: € 7.268.981

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

AI-Human Task-Sharing could Cut Mammogra…

The most effective way to harness the power of artificial intelligence (AI) when screening for breast cancer may be through collaboration with human radiologists - not by wholesale replacing them...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

Philips Future Health Index 2025 Report …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today unveiled its 2025 Future Health Index U.S. report, "Building trust in healthcare AI," spotlighting the state of...

AI-Powered Precision: Unlocking the Futu…

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine...

AI Model Improves Delirium Prediction, L…

An artificial intelligence (AI) model improved outcomes in hospitalized patients by quadrupling the rate of detection and treatment of delirium. The model identifies patients at high risk for delirium and...

SALSA: A New AI Tool for the Automated a…

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep...

Call for Papers: AI Applications in Biom…

JMIR Biomedical Engineering is inviting submissions for a new section titled "AI Applications in Biomedical Engineering." This themed section explores the integration of biomedical engineering and artificial intelligence (AI), focusing...