PSIP

Adverse Drug Events (ADE) due to product safety problems, and medication errors due to human factors (HF) are a major Public Health issue. They endanger the patients¿ safety and originate considerable extra hospital costs. Healthcare ICT applications should help reducing the prevalence of preventable ADE, by providing healthcare professionals and patients with relevant knowledge (guidelines, recommendations, etc.).

But their efficiency is impeded by two major drawbacks:

  • lack of reliable knowledge about ADE
  • poor ability of ICT solutions to deliver contextualised knowledge focused on the problem at hand, aggravated by a poor consideration of causative HF.

The objective of the project Patient Safety through Intelligent Procedures in Medication (PSIP) is (1) to facilitate the systematic production of epidemiological knowledge on ADE and (2) to ameliorate the entire medication cycle in a hospital environment.

The first sub-objective, SO, is to innovatively produce knowledge on ADE: to know, as exactly as possible, per hospital, their number, type, consequences and causes, including HF. Data Mining of the structured hospital data bases, and Semantic Mining of Data Collections of free-texts (letters, reports), will give a list of observed ADEs, with frequencies and probabilities, thus giving a better understanding of potential risks.

The second SO is to develop a set of innovative knowledge based on the mining results and to deliver a contextualised knowledge fitting the local risk parameters, in the form of alerts and decision support functions. This knowledge will be implemented in a PSIP-platform independently of existing ICT applications. These applications will connect to the platform to access and integrate the knowledge in their local system. The design and development cycle of the PSIP solution will be HF oriented.

Dissemination plans will be developed taking into account other uses (medical devices, primary and tertiary Healthcare).

For further information, please visit:
http://www.psip-project.eu

Project co-ordinator:
CENTRE HOSPITALIER REGIONAL ET UNIVERSITAIRE DE LILLE

Partners:

  • KITE SOLUTIONS S.N.C. DI DUNNE CATHERINE E C.
  • AALBORG UNIVERSITET
  • ORACLE FRANCE SAS
  • REGION HOVEDSTADEN
  • IBM DANMARK A/S
  • CENTRE HOSPITALIER DE DENAIN
  • VIDAL S.A.
  • IDEEA ADVERTISING SRL
  • EVALAB
  • MEDASYS SA
  • CENTRE HOSPITALIER UNIVERSITAIRE DE ROUEN
  • ARISTOTLE UNIVERSITY OF THESSALONIKI
  • UMIT - PRIVATE UNIVERSITAET FUER GESUNDHEITSWISSENSCHAFTEN, MEDIZINISCHE INFORMATIK UND TECHNIK GESELLSCHAFT MBH

Timetable: from 01/2008 – to 04/2011

Total cost: € 9.946.770

EC funding: € 7.268.981

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...