PSIP

Adverse Drug Events (ADE) due to product safety problems, and medication errors due to human factors (HF) are a major Public Health issue. They endanger the patients¿ safety and originate considerable extra hospital costs. Healthcare ICT applications should help reducing the prevalence of preventable ADE, by providing healthcare professionals and patients with relevant knowledge (guidelines, recommendations, etc.).

But their efficiency is impeded by two major drawbacks:

  • lack of reliable knowledge about ADE
  • poor ability of ICT solutions to deliver contextualised knowledge focused on the problem at hand, aggravated by a poor consideration of causative HF.

The objective of the project Patient Safety through Intelligent Procedures in Medication (PSIP) is (1) to facilitate the systematic production of epidemiological knowledge on ADE and (2) to ameliorate the entire medication cycle in a hospital environment.

The first sub-objective, SO, is to innovatively produce knowledge on ADE: to know, as exactly as possible, per hospital, their number, type, consequences and causes, including HF. Data Mining of the structured hospital data bases, and Semantic Mining of Data Collections of free-texts (letters, reports), will give a list of observed ADEs, with frequencies and probabilities, thus giving a better understanding of potential risks.

The second SO is to develop a set of innovative knowledge based on the mining results and to deliver a contextualised knowledge fitting the local risk parameters, in the form of alerts and decision support functions. This knowledge will be implemented in a PSIP-platform independently of existing ICT applications. These applications will connect to the platform to access and integrate the knowledge in their local system. The design and development cycle of the PSIP solution will be HF oriented.

Dissemination plans will be developed taking into account other uses (medical devices, primary and tertiary Healthcare).

For further information, please visit:
http://www.psip-project.eu

Project co-ordinator:
CENTRE HOSPITALIER REGIONAL ET UNIVERSITAIRE DE LILLE

Partners:

  • KITE SOLUTIONS S.N.C. DI DUNNE CATHERINE E C.
  • AALBORG UNIVERSITET
  • ORACLE FRANCE SAS
  • REGION HOVEDSTADEN
  • IBM DANMARK A/S
  • CENTRE HOSPITALIER DE DENAIN
  • VIDAL S.A.
  • IDEEA ADVERTISING SRL
  • EVALAB
  • MEDASYS SA
  • CENTRE HOSPITALIER UNIVERSITAIRE DE ROUEN
  • ARISTOTLE UNIVERSITY OF THESSALONIKI
  • UMIT - PRIVATE UNIVERSITAET FUER GESUNDHEITSWISSENSCHAFTEN, MEDIZINISCHE INFORMATIK UND TECHNIK GESELLSCHAFT MBH

Timetable: from 01/2008 – to 04/2011

Total cost: € 9.946.770

EC funding: € 7.268.981

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...