Philips and PathAI Team Up to Improve Breast Cancer Diagnosis Using Artificial Intelligence Technology in 'Big Data' Pathology Research

PhilipsRoyal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and PathAI, a company that develops artificial intelligence technology for pathology, are collaborating with the aim to develop solutions that improve the precision and accuracy of routine diagnosis of cancer and other diseases. The partnership aims to build deep learning applications in computational pathology enabling this form of artificial intelligence to be applied to massive pathology data sets to better inform diagnostic and treatment decisions. The initial focus of this effort is on developing applications to automatically detect and quantify cancerous lesions in breast cancer tissue.

The accurate quantitative assessment of cancer involvement and scale is a central and challenging task for pathologists. This task, while critical to diagnosis and treatment, is very time-consuming and can place increased pressure on pathologists to conduct slide readings and analysis faster. Historically, pathologists have manually reviewed and analyzed tumor tissue slides using a microscope, but the rising shortage of pathologists and the increase in cancer caseloads(1,2) require digital pathology solutions and smart image analysis software that reduce pathologists’ routine workload, improve diagnostic accuracy and precision, and reduce error rates.

"Breast cancer is the most common cancer in women worldwide, with over 250,000 new cases(3) diagnosed every year in the U.S.," says Andy Beck, CEO of PathAI. "Our goal is to help patients receive fast, accurate diagnosis and support treating physicians to deliver optimal care by empowering pathologists with decision support tools powered by artificial intelligence. For example, identifying the presence or absence of cancer in lymph nodes is a routine and critically important task for a pathologist. However, it can be extremely laborious using conventional methods. Research indicates that pathologists supported with computational tools could be both more accurate and faster."

Deep learning is an algorithmic technique that is revolutionizing what is possible in areas such as finance, communication, automotive, natural language processing, computer vision and more. It allows computers to analyze vast amounts of data and automatically detect patterns and make accurate predictions. Philips has already implemented deep learning in its clinical informatics solutions for radiology such as Illumeo and IntelliSpace Portal 9.0. With the proliferation of digital pathology and whole slide imaging (WSI), computers will soon be able to learn and unlock the 'big data' potential of thousands of digital tumor tissue (histology) images and related patient data. As a pioneer in the digitization of pathology, Philips has created a leading digital pathology business through strategic investments, partnerships and technology licenses.

"Digitizing images in pathology has the potential to transform the field by unlocking new opportunities in image recognition," said Russ Granzow, General Manager of Philips Digital Pathology Solutions. "With computational pathology and the application of artificial intelligence there is an opportunity to increase efficiencies, enable greater accuracy and precision, and allow pathologists to see things and access insights not previously available."

Last year, Dr. Andy Beck and his colleagues from Harvard Medical School and MIT, won a global challenge on the detection of metastatic lesions in lymph nodes with a performance that rivals human error rates consistently. Now Philips and PathAI are partnering to ensure such highly promising technologies could find a practical application in aiding pathologists in their effort to deliver high quality, high confidence diagnosis.

1. The Royal College of Pathologists, https://www.rcpath.org/profession/workforce/workforce-planning.html, Accessed December 2016.
2. International Agency for Research on Cancer and Cancer Research UK. World Cancer Factsheet. Cancer Research UK, London, 2014.
3. www.breastcancer.org

About Royal Philips
Royal Philips (NYSE: PHG, AEX: PHIA) is a leading health technology company focused on improving people's health and enabling better outcomes across the health continuum from healthy living and prevention, to diagnosis, treatment and home care. Philips leverages advanced technology and deep clinical and consumer insights to deliver integrated solutions. Headquartered in the Netherlands, the company is a leader in diagnostic imaging, image-guided therapy, patient monitoring and health informatics, as well as in consumer health and home care. Philips' health technology portfolio generated 2016 sales of EUR 17.4 billion and employs approximately 71,000 employees with sales and services in more than 100 countries.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...