Philips Announces New Augmented-Reality Surgical Navigation Technology Designed for Image-Guided Spine, Cranial and Trauma Surgery

PhilipsRoyal Philips (NYSE: PHG, AEX: PHIA), a leader in integrated image-guided therapy solutions, today announced the development of an industry-first augmented-reality surgical navigation technology that is designed to help surgeons perform image-guided open and minimally-invasive spine surgery. Philips is a pioneer in hybrid operating room (hybrid OR) solutions to facilitate both surgical and minimally-invasive endovascular procedures, with over 750 hybrid ORs installed globally. The addition of this new augmented reality technology will further widen the scope of Philips hybrid OR solutions to other fast-growing areas of image-guided surgery including spine, cranial and trauma procedures.

Spine surgery was traditionally an 'open surgery' procedure, accessing the affected area via a large incision so that surgeons could physically see and touch the patient's spine in order to position implants such as pedicle screws. In recent years, however, there has been a definite shift to the use of minimally-invasive techniques, performed by manipulating surgical tools through small incisions in the patient's skin in order to minimize blood loss and soft tissue damage, and consequently reduce postoperative pain. Due to inherently reduced visibility of the spine during these procedures, surgeons have to rely on real-time imaging and navigation solutions to guide their surgical tools and implants. The same is true for minimally-invasive cranial surgery and surgery on complex trauma fractures.

Philips is developing a new augmented-reality surgical navigation technology, which will add additional capabilities to the company's low-dose X-ray system. The technology uses high-resolution optical cameras mounted on the flat panel X-ray detector to image the surface of the patient. It then combines the external view captured by the cameras and the internal 3D view of the patient acquired by the X-ray system to construct a 3D augmented-reality view of the patient's external and internal anatomy. This real-time 3D view of the patient's spine in relation to the incision sites in the skin aims to improve procedure planning, surgical tool navigation and implant accuracy, as well as reducing procedure times.

"This unique augmented-reality technology is an example of how we expand our capabilities with innovative solutions in growth areas such as spine, neuro and trauma surgery," said Ronald Tabaksblat, Business Leader Image-Guided Therapy Systems at Philips. "By teaming up with clinical innovation leaders, we continue to find ways to convert open surgery to minimally-invasive treatment to reduce post-operative pain and expedite recovery."

As part of a joint clinical research program, Philips hybrid ORs with this new capability will be installed in a network of ten clinical collaborators to advance the technology.

The results of the first pre-clinical study on the technology have been published in the prestigious SPINE journal, as a result of a collaboration between Philips, Karolinska University Hospital (Stockholm, Sweden) and the Cincinnati Children's Hospital Medical Center (Cincinnati, USA). The technology was shown to be significantly better with respect to overall accuracy, compared to pedicle screw placement without the aid of Philips' augmented-reality surgical navigation technology (85% vs 64%, p<0.05).

"This new technology allows us to intraoperatively make a high-resolution 3D image of the patient's spine, plan the optimal device path, and subsequently place pedicle screws using the system's fully-automatic augmented-reality navigation," said Dr. Skúlason of the Landspitali University Hospital, Reykjavik, Iceland. "We can also check the overall result in 3D in the OR without the need to move the patient to a CT scanner. And all this can be done without any radiation exposure to the surgeon and with minimal dose to the patient."

The technology was also recently presented at the North American Spine Society Annual Meeting in Boston by Dr. Adrian Elmi-Terander of Karolinska University Hospital, Sweden.

Today, Philips' commercial hybrid OR solutions are already being used for image-guided minimally-invasive surgery.

"Since we no longer do open spine surgery, we depend on imaging and image quality," commented Prof. Seekamp from the Universitätsklinikum Schleswig-Holstein in Kiel, Germany. "I had expected the operations to take a little longer in the hybrid OR, but in fact just the opposite is true."

Dr. Bemelman, trauma surgeon at the Elisabeth Hospital in Tilburg, the Netherlands, said: "We teamed up with vascular, neuro and orthopedic surgeons to create this multi-purpose OR to realize a high room utilization, provide state-of-the-art care and reduce the overall cost for the hospital."

About Royal Philips
Royal Philips (NYSE: PHG, AEX: PHIA) is a leading health technology company focused on improving people's health and enabling better outcomes across the health continuum from healthy living and prevention, to diagnosis, treatment and home care. Philips leverages advanced technology and deep clinical and consumer insights to deliver integrated solutions. Headquartered in the Netherlands, the company is a leader in diagnostic imaging, image-guided therapy, patient monitoring and health informatics, as well as in consumer health and home care. Philips' health technology portfolio generated 2015 sales of EUR 16.8 billion and employs approximately 70,000 employees with sales and services in more than 100 countries.

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...