Imaging Suite to Speed Diagnosis

PhilipsThe Methodist Hospital Research Institute (Houston, Texas, USA) and Philips have collaborated to develop new imaging technology that could be used to help identify the start and cause of an infectious disease epidemic.

King Li, M.D., radiology chair and the project's leader, and other Methodist scientists will use an USD 8.6 million (approx. EUR 5.5 million) imaging suite that includes an MRI, a PET-CT scanner, a SPECT-CT scanner, and an X-ray device called a C-arm to study patterns of tissue damage and metabolic disarray caused by different infectious disease agents - without exposing the devices or suite rooms to the infectious agents. The suite is scheduled to be completed later this month.

"The ability to have imaging suites that can handle high level infectious agents allows us to be more prepared in the community for these types of events and, more importantly, allows us to study ways to deal with their consequences," Li said.

Air-tight containment vessels make it possible for samples and infected research models to be imaged without posing risks of exposure to patients, researchers or staff. Advanced technology also allows for rapid image scanning, so that time series imagery is possible.

"No one can do longitudinal imaging studies anywhere at the moment," said Ed Jones, vice president of operations for The Methodist Hospital Research Institute. "Researchers at Methodist will be able to do live imaging studies that give them crucial information about how and where infections are progressing. This is what can happen when the best scientists and engineers from academia and industry become partners in advancing the state of the art in medical technology."

Methodist will be the sole practical test site for the development of the technology.

The purpose of the suite is to study pathogens that require biosafety level 3 (BSL-3) containment. BSL-3 pathogens include the bacteria that cause tuberculosis.

"This imaging facility will be the first of its kind," said James M. Musser, M.D., Ph.D., chair of the Department of Pathology and Laboratory Medicine and director of the Center for Molecular and Translational Human Infectious Diseases Research at The Methodist Hospital. "Our facility will permit us to translate critical new discoveries into the clinic, permitting accelerated development of novel diagnostic strategies and assessment of new therapeutic agents and vaccines."

King Li said the notion that imaging techniques might be used to shield populations from epidemiological harm is nearly a decade old.

"After 9/11 and the SARS outbreak in southeast Asia, the NIH wanted to build a BSL-4 imaging suite for studying infectious agents, both natural and bioterrorism-related," Li said. "I was at the NIH at the time, and helped design the imaging equipment for that facility."

Li's work with Philips led to two pending imaging patents.

A containment vessel will keep the subjects - initially model organisms - isolated from the unexposed space around it. Each vessel, or imaging cell, is accompanied by an external life support device on a transport trolley. The trolley is also used to maneuver the subject into place for imaging.

One of the project's ultimate goals, Li said, is to develop a similar facility that is equipped to diagnose infectious diseases in a large influx of (human) patients.

"If the partnership with Philips is successful, The Methodist Hospital Research Institute can take the next steps toward creating the only clinic in the world expressly designed to image patients with infectious agents, such as multi-drug-resistant TB," Li said. "This will allow for medical centers in the world to be more prepared for emerging diseases and bioterrorism."

The specific systems provided by Philips are the Ingenia 3T (MRI scanner), Gemini TF 64 PET-CT scanner), Precedence 16 (SPECT-CT scanner), and Veradius mobile C-arm.

Related news articles:

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified health and well-being company, focused on improving people's lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of "sense and simplicity." Headquartered in the Netherlands, Philips employs over 120,000 employees with sales and services in more than 100 countries worldwide. With sales of EUR 22.3 billion in 2010, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in male shaving and grooming, portable entertainment and oral healthcare.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...