Philips Accelerates the Development of Magnetic Particle Imaging Technology

PhilipsRoyal Philips Electronics (NYSE: PHG, AEX: PHI) has initiated a German public-private partnership that aims to advance the development of whole-body Magnetic Particle Imaging (MPI) systems and preclinical hybrid systems that combine MPI with Magnetic Resonance Imaging (MRI). The German Federal Ministry of Education and Research has made a commitment to provide EUR 10.6 million funding to the consortium partners. The target size of the consortium budget, comprising contributions from the German government and the consortium's public/private partners, is EUR 20.3 million.

Philips is committed to delivering leading-edge imaging solutions to help in the early detection, diagnosis and treatment of disease. Researching future-generation imaging technologies such as MPI underpins the long-term nature of this commitment. MPI was invented by scientists at Philips. It relies on the magnetic properties of iron-oxide nanoparticles (the so-called tracer) that are injected into the bloodstream. An MPI system spatially and quantitatively detects these iron-oxide nanoparticles in order to produce three-dimensional images of physiological processes. The technology has already proved capable of capturing accurate real-time 3D-images of blood flow and heart motion in mice.

"As part of our Open Innovation approach, Philips has initiated the Magnetic Particle Imaging Technology - MAPIT - consortium to accelerate the translation of this innovative new imaging concept into clinical practice," says Michael Kuhn, Vice President Technology Strategy at Philips Healthcare. "Realizing the full potential of MPI to help in elucidating the processes associated with disease requires an integrated approach and a collaborative effort. I am convinced that the multidisciplinary MAPIT consortium is well positioned to advance MPI development in the areas of instrumentation, tracers, and application research."

"Constant improvements in medical imaging technology have significantly boosted advances in healthcare. Based on the level of performance that has been demonstrated in preclinical studies, I consider MPI to be a new imaging modality with the real potential to improve diagnostic imaging in cardiology and oncology, as well as being a tremendous tool for the advancement of molecular imaging in general," says Professor Bernd Hamm, Director of the Department of Radiology and Chair of Radiology at the Charité - Universitätsmedizin Berlin.

Philips and the University of Lübeck, two of the three proposed consortium partners in the instrumentation area, will focus on the development of whole-body MPI demonstrators. The third instrumentation partner, Bruker Corporation (NASDAQ: BRKR), will focus on developing a simultaneous or consecutive preclinical MPI plus MRI capability. This will complement the functional MPI information with morphological information from MRI for the purposes of preclinical imaging. In the area of tracer development, the proposed partners Bayer Schering Pharma AG, Miltenyi Biotec, Charité-Universitätsmedizin Berlin and the Physikalisch-Technische Bundesanstalt (PTB) aim to develop magnetic nanoparticle materials optimized for MPI.

Two principal application areas will be explored by the consortium: functional cardiovascular measurements (such as myocardial perfusion) and image-guidance of cardiovascular interventions (using interventional devices optimized for MPI guidance).

The results achieved at the Philips Research Laboratories in Hamburg (Germany) in the preceding MAGIC (Magnetic Particle Imaging for Cardiovascular Applications) research consortium contributed significantly to the development of MPI. The MAGIC project, which was also funded by the German Federal Ministry of Education and Research, has already resulted in an agreement between Philips and Bruker Biospin regarding the commercialization of MPI scanners for the preclinical market.

Related news articles:

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified health and well-being company, focused on improving people’s lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of "sense and simplicity". Headquartered in the Netherlands, Philips employs more than 118,000 employees in more than 60 countries worldwide. With sales of US 32.3 billion in 2009, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...