Philips Led HYPERImage Project Advances Research on Hybrid PET/MR Scanner

Royal Philips ElectronicsAs leader of the European Union funded HYPERImage research project, Royal Philips Electronics (NYSE: PHG, AEX: PHI) announced that the project has achieved a major milestone in its ambitious plan to create a new medical imaging technique called hybrid PET/MR. This new technique is based on the simultaneous acquisition of time-of-flight Positron Emission Tomography (PET) and Magnetic Resonance (MR) images.

The project involves eight partners from six European countries and has a total budget of around EUR 7 million. The ultimate goals of the project are to advance the accuracy of diagnostic imaging in cardiology and oncology and open up new fields in therapy planning, guidance and response monitoring.

A hybrid PET/MR scanner could simultaneously deliver the anatomical and functional information achievable using state-of-the-art MR scanners (e.g. soft tissue contrast and physiological processes in blood vessels) and the molecular imaging information provided by PET. As a result, it would combine the best of both worlds, which could ultimately help to pinpoint and characterize disease sites within the body more accurately than is currently possible.

For a hybrid scanner that offers simultaneous PET and MR image acquisition, two fundamental problems need to be solved: the development of MR-compatible PET detectors and a method of accounting for PET attenuation (the scattering of high-energy gamma rays generated by the PET tracers by parts of the human body).

The milestone that the HYPERImage team has reached is the development of a functional gamma-ray detector that meets the performance requirements of the latest time-of-flight PET scanners. The new gamma-ray detectors have been designed to be compatible with the strong static and dynamic magnetic fields that would be present in a combined PET/MR scanner. Furthermore, the team has achieved major progress with respect to MRI-based static and dynamic PET attenuation correction. Details of these results are presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, which takes place on October 25-31 in Orlando, Florida, USA.

"Understanding the molecular mechanisms associated with cardiovascular disease and cancer, and the development of technologies focused on the early detection of these disease processes are the two main challenges of biomedical research," said Prof. Dr. Valentin Fuster, Director of the National Center for Cardiovascular Research in Madrid (one of Europe's leading research centers in cardiology) and the Cardiovascular Institute at the Mount Sinai Medical Center in New York. "I am convinced that the realization of a PET/MR technology platform will significantly help to improve the precision and the moment at which disease is diagnosed, two critical parameters for the successful treatment of many diseases."

"The HYPERImage team’s combined expertise in semiconductor physics, signal processing and medical scanner design, together with its expert clinical knowledge, have moved the project an important step forward in the development of a new imaging tool that is intended to help clinicians diagnose and treat some of the world's most prevalent killer diseases, such as breast cancer," says Henk van Houten, senior vice president of Philips Research and head of Philips' healthcare research program. "I am proud to say that proof-of-concept of an MR-compatible PET detector took the team less than 1.5 years to achieve. It clearly demonstrates that good collaborations lead to very fast progress."

The HYPERImage consortium comprises three universities (King's College London, UK; Universität Heidelberg, Germany; and Universiteit Ghent - Institute for Broadband Technology, Belgium), three research foundations (Fundación Centro Nacional de Investigaciones Cardiovasculares, Spain; Fondazione Bruno Kessler, Italy; and The Netherlands Cancer Institute, The Netherlands), a university medical center (Uniklinikum Hamburg-Eppendorf, Germany) and the industrial partner (Philips, The Netherlands and Germany).

EU funding for the HYPERImage project, which is being provided as part of the EU's 7th Framework Program, amounts to around EUR 5 million. The consortium partners will provide an additional EUR 2.3 million. The project started in 2008 and will run for three years. Philips' leadership of the consortium is based on its experience in designing and developing medical scanners.

For further information, please visit:
http://www.hybrid-pet-mr.eu

Related news articles:

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified Health and Well-being company, focused on improving people’s lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of "sense and simplicity". Headquartered in the Netherlands, Philips employs more than 118,000 employees in more than 60 countries worldwide. With sales of EUR 26 billion in 2008, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare. News from Philips is located at www.philips.com/newscenter.

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...