SonoDrugs Project to Develop Image-Guided Localized Drug Delivery Technologies

Royal Philips ElectronicsRoyal Philips Electronics today announced that it is leading a major new European project to develop drug delivery technologies that could significantly impact the treatment of cancer and cardiovascular disease. By allowing drugs to be delivered to disease sites via the patient's bloodstream and then activated by focused ultrasound pulses, the SonoDrugs project aims to maximize the therapeutic efficiency and minimize the side effects of drug treatments for cancer and cardiovascular disease. The project, which involves a total of fifteen industrial partners, university medical centers and academic institutions from throughout the European Union (EU), will run for four years and has a budget of EUR 15.9 million, EUR 10.9 million of which is being funded under the EU's 7th Framework program.

The SonoDrugs consortium consists of the industrial partners Philips (The Netherlands, Germany and Finland), Nanobiotix (France) and Lipoid (Germany); the university medical centers Erasmus Medical Center (The Netherlands) and Universitäts Klinikum Münster (Germany); and the academic institutions University of Cyprus (Cyprus), University of Gent (Belgium), University of Helsinki (Finland), University of London (United Kingdom), University of Tours (France), University Victor Segalen Bordeaux (France), University of Technology Eindhoven (The Netherlands) and the University of Udine (Italy).

Cardiovascular disease and cancer are currently the two biggest killers in the world. Although powerful drugs are available to treat certain types of cancer and cardiovascular disease they are mostly administered as intravenous or oral doses. This allows only very limited control over the distribution of drugs in the body, which can circulate in the patient's bloodstream and interact with many different tissues and organs, both diseased and healthy. The SonoDrugs project aims to address this challenge by developing drug delivery vehicles that can be tracked by ultrasound or magnetic resonance imaging (MRI) and triggered by ultrasound to release the drugs at the desired location. It is hoped that such control of the drug delivery process will increase therapeutic efficiency and minimize side effects, while also providing a means of tailoring the therapy to individual patients.

"New therapeutic options such as externally triggered local drug release at the specific site of disease hold the promise to significantly improve patient care," says Henk van Houten, senior vice president of Philips Research and head of Philips' healthcare research program. "We realize that medical imaging technologies are only one of the enablers required to fulfill this promise. However, the wide-ranging expertise that has been brought together in the SonoDrugs project puts us in a strong position to ultimately deliver the benefits of image-guided drug delivery to patients and care providers."

In attempting to realize its objective, the SonoDrugs project will take a two-pronged approach: the first is based on magnetic resonance imaging (MRI) guidance and the second is based on ultrasound guidance. The project's research on MRI-guided drug delivery will largely be targeted at potential treatments for cancer. The SonoDrugs project aims to develop MRI techniques to simultaneously image the patient's anatomy, detect the arrival of MRI-labeled drug-loaded particles at the disease site, measure the local heating effect of the ultrasound pulses, and monitor the temperature triggered release of drugs from the particles.

For potential applications in the treatment of cardiovascular disease, the project will focus on the use of ultrasound as the primary imaging modality as well as the means of releasing drugs from pressure sensitive microbubbles. Philips Research is at the forefront of research into the drug delivery potential of microbubbles by adapting existing microbubble technology so that microbubbles can deliver precise doses of drugs exactly where they might be needed in the body.

Related news articles:

Source: PharmaNews.eu

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified Health and Well-being company, focused on improving people's lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of "sense and simplicity". Headquartered in the Netherlands, Philips employs approximately 121,000 employees in more than 60 countries worldwide. With sales of EUR 26 billion in 2008, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare. News from Philips is located at www.philips.com/newscenter.

Most Popular Now

AI Helps Physicians Better Assess the Ef…

In a small but multi-institutional study, an artificial intelligence (AI)-based system improved providers' assessments of whether patients with bladder cancer had complete response to chemotherapy before a radical cystectomy (bladder...

Smartwatches and Fitness Bands Reveal In…

A new digital health study by researchers at Scripps Research shows how data from wearable sensors, such as smartwatches and fitness bands, can track a person’s physiological response to the...

AI may Detect Earliest Signs of Pancreat…

An artificial intelligence (AI) tool developed by Cedars-Sinai investigators accurately predicted who would develop pancreatic cancer based on what their CT scan images looked like years prior to being diagnosed...

Open Call U4H-2022-PJ2: Call for Proposa…

The Ukraine crisis has an unprecedented impact on the mental health of the displaced people in the EU coming from Ukraine. The conflict and experiences of people in war zones...

AI Reduces Miss Rate of Precancerous Pol…

Artificial intelligence reduced by twofold the rate at which precancerous polyps were missed in colorectal cancer screening, reported a team of international researchers led by Mayo Clinic. The study is...

Medical Valley EMN & Volitan Global …

The two healthcare innovation experts Medical Valley EMN and Volitan Global strengthen their existing inbound- and outbound activities through a strategic partnership. The aim is to offer companies access to...

DMEA - Connecting Digital Health Opens w…

26 - 28 April 2022, Berlin, Germany. What plans does the new federal government have concerning the digital transformation of the healthcare sector? What are the initial experiences of doctors regarding...

AI can Predict Probability of COVID-19 v…

Testing shortages, long waits for results, and an over-taxed health care system have made headlines throughout the COVID-19 pandemic. These issues can be further exacerbated in small or rural communities...

Using AI to Detect Cancer from Patient D…

A new way of using artificial intelligence to predict cancer from patient data without putting personal information at risk has been developed by a team including University of Leeds medical...

Oulu University Hospital Expands Partner…

Siemens Healthineers and Oulu University Hospital in Finland have entered a strategic partnership for the next ten years, adding to an existing radiotherapy collaboration to jointly expand and modernize the...

Positive Conclusion to DMEA - Connecting…

26 - 28 April 2022, Berlin, Germany. After three days DMEA, Europe's leading digital health event, came to a successful conclusion - with around 11,000 visitors, more than 500 exhibitors and...

AI-Enabled ECGs may Identify Patients at…

Atrial fibrillation, the most common cardiac rhythm abnormality, has been linked to one-third of ischemic strokes, the most common type of stroke. But atrial fibrillation is underdiagnosed, partly because many...