Open Call HORIZON-HLTH-2023-IND-06-07: Development and Harmonisation of Methodologies for Assessing Digital Health Technologies in Europe

European CommissionThis topic aims at addressing digital transition challenges through supporting activities that are enabling or contributing to one or several expected impacts of destination 6 "Maintaining an innovative, sustainable and globally competitive health industry". More specifically, this topic aims at supporting activities that are contributing to the following impact area: "High quality digital services for all". To that end, proposals under this topic should aim to deliver results that are directed towards and contributing to all of the following expected outcomes:
  • Policymakers in the EU have at their disposal a methodological framework and standardised approaches for assessing digital health technologies, that helps them make evidence-based decisions regarding the introduction of digital health technologies in their health and care systems with added value for patients and society.
  • Regulators have access to robust, scientifically underpinned evaluation methodologies.
  • EU citizens gain faster access to safe and well-performing person-centred digital technologies and are empowered through these tools.
  • Health technology developers are better informed and dispose of more guidance on the evidence needed to demonstrate the added value of digital health technologies and have better insights on market predictability.
  • (Digital) Health Industry/digital health technology developers and HTA bodies can contribute to the development of EU harmonised Health Technology Assessment (HTA) rules based on common principles.
  • Improved cross-border use and interoperability of digital health tools and services throughout the EU and Associated Countries.
  • Increased trust in digital health technologies and better integration of digital health tools and services in health and care systems.

Digital health technologies have been driving a revolution in health and care ranging from general use of computers to algorithms designed to assist radiologists and radiotherapists in detecting and treating diseases, from robotic surgery to artificial intelligence, machine learning, computer aided decision models, and from mobile apps helping patients to self-manage their disease to electronic health records.

Digital health technologies are expected to further contribute to better people-centred health and care systems and have the vast potential to improve our ability to accurately prevent, diagnose and treat diseases.

However, assessing the added value and health benefits for patients and society pose a number of challenges in particular of methodological and technical nature. Best practice for common approaches in methodology for digital health are lacking, especially in the digital health tools that include artificial intelligence algorithms. A framework for the assessment of the digital transformation of health services and its impact is vital to generate the evidence required for decision-making on stimulating, using and/or funding digital health strategies at various levels in the health and care systems.

The Expert Panel on effective ways of investing in Health (EXPH) recommended in its report 'Assessing the impact of digital transformation of health services', further investment in the development of assessment methodologies and in a European repository for evaluation methods and evidence of digital health services.

To date, such assessment frameworks are relatively scarce, especially those addressing the transformative aspects of healthcare delivery on the organisational and operational level.

The proposals are expected to develop and harmonise methodologies for assessing digital health technologies (including mhealth apps and telehealth, as well as Artificial Intelligence powered health technologies) in order to facilitate assessment of their added value at individual, health system and society levels and facilitate the cross-border deployment of digital health services within the EU. Existing Health Technology Assessment (HTA) methodology is well developed for health technologies such as medicinal products, but also for some categories of medical devices; however digitalisation raises new methodological challenges to the standardisation of assessment criteria such as privacy, cybersecurity, data storage and handling, interoperability, usability etc. Also including aspects like learning curves, iterative development of innovations, variability between settings, determining optimal timing of evaluations in the development process (maturity) are not yet solved.

Proposals are expected to build on existing frameworks such as (but not restricted to) 'Model for Assessment of Telemedicine' (MAST framework - Kidholm et al., 2012) and the results of previous EU-funded projects in particular (but not restricted to) COMED, project that already identified HTA challenges of telehealth and mhealth, and mHealth hub.

Proposals should consider involving the JRC to take advantage of its expertise on assessment frameworks of innovative health technologies and its activities at the interface between research and regulatory aspects and/or in translating assessment results into best practice recommendations anchored in EU policies. In that respect, the JRC is open to collaborate with any successful proposal after its approval.

Opening date: 12 January 2023

Deadline: 13 April 2023 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: HORIZON-RIA HORIZON Research and Innovation Actions

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-hlth-2023-ind-06-07

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...

NHS National Rehabilitation Centre to De…

The new NHS National Rehabilitation Centre will deploy technology to help patients to maintain their independence as they recover from life-changing injuries and illnesses and regain quality of life. Airwave Healthcare...

AI Finds Hundreds of Potential Antibioti…

Snake, scorpion, and spider venom are most frequently associated with poisonous bites, but with the help of artificial intelligence, they might be able to help fight antibiotic resistance, which contributes...

AI Tool Accurately Detects Tumor Locatio…

An AI model trained to detect abnormalities on breast MR images accurately depicted tumor locations and outperformed benchmark models when tested in three different groups, according to a study published...

AI can Accelerate Search for More Effect…

Scientists have used an AI model to reassess the results of a completed clinical trial for an Alzheimer’s disease drug. They found the drug slowed cognitive decline by 46% in...

AI Accurately Classifies Pancreatic Cyst…

Artificial intelligence (AI) models such as ChatGPT are designed to rapidly process data. Using the AI ChatGPT-4 platform to extract and analyze specific data points from the Magnetic Resonance Imaging...