Open Call HORIZON-JU-IHI-2022-01-01: An Innovative Decision-Support System for Improved Care Pathways for Patients with Neurodegenerative Diseases and Comorbidities

European Commission Neurodegenerative disorders represent a high societal burden impacting patients, their families, and public healthcare systems. Patients with a neurodegenerative disorder frequently display at least one comorbidity, which together with the observed polypharmacy creates a highly complex system that needs better understanding to optimise current care pathways. Recent developments give grounds for cautious optimism that a disease-modifying therapy is on the horizon. However, the high disease prevalence, and the complex evaluation process when such a therapy becomes available, will create challenges for already over-burdened healthcare systems. This will increase the demand for and importance of diagnostic and digital solutions that can drive the related clinical pathways and optimise and personalise care delivery.

The primary objective of this topic is to develop a decision-support system to enhance medical decisions with targeted clinical knowledge, patient information, and other health information for a more holistic (better integrating diagnosis, treatment and care and breaking silos across specialities) approach to managing and treating patients with a neurodegenerative disease and a comorbid condition, addressing the needs of today, while creating preparedness for a future paradigm-shift in treatment.

In their proposal, applicants should formulate how to best achieve all the outcomes/outputs of this topic, also describing the expected actual improvement in care and treatment outcomes and reflecting on aspects of implementation into routine care and sustainability, that are barriers to developing and distributing/delivering innovations. This should be preceded by a key stakeholder mapping to grasp the relevant players within this ecosystem and build and leverage as much as possible upon already available resources and learnings.

Proposals should address a patient population with a neurodegenerative disease where there is evidence of the importance of comorbidities in their healthcare pathways and on patient quality of life. The choice of the comorbidity should consider the burden for patients, carers and families, and the availability of medical technology-generated data. Cancer is out of scope.

Applicants should develop a (sustainable) re-usable, interoperable, and scalable digital platform, to safely and efficiently collect, curate, store, share, access, integrate and analyse multimodal longitudinal, dynamic health data generated within and outside the healthcare setting.

This will require breaking existing data silos across different medical specialities to allow the dynamic flow of information on the concomitant conditions and their interplay to improve the selection of the best possible care pathways, and patient adherence.

Data may include medical/laboratory data, automatically collected data, omics data, medical device data, treatment modality/intervention-type data, real-world evidence, including medical condition and lifestyle-related data collected via e-health solutions, smart devices, wearables, medical grade sensors and other patient self-reported data. Data on contextual information, for example on the socioeconomic environment as well as professional and informal caregivers (like availability, roles, interprofessional cooperation, interaction with the patient/client), the setting and organisation of care, staffing, and payment models, should be considered to enrich the dataset informing decision, as well as data from patient registries. Current European activities on digital health and care should be considered when relevant. The patient perspective and notably their quality of life, will need to be sufficiently considered including via patient-reported experiences and outcomes measurements (PREMs; PROMs). The perspective of families and carers should be also included.

Applicants should consider leveraging relevant large datasets that are already available at national and / or European level.

Ensuring data quality will be of paramount importance. In addition, applicants should ensure trustworthy and safe sharing of patient data through 'privacy and security by design'. They should also give ample consideration for the control of data reuse by patients and healthcare professionals, for example by the implementation of 'FAIR' data principles and a suitable data governance structure.

The platform should build on suitable existing platforms or elements thereof (for example specialised research infrastructures, including those developed by IMI projects) with proven efficiency and interoperability, complying with European privacy and security requirements and enabling integrated workflows of data management, curation, and analysis to amplify the intrinsic value of the datasets. Its design should allow for future expansion as well as continuous updates in a secure environment, plus potential integration with other platforms and easy adaptation for use in other health areas.

Advanced analytical and workflow tools (including artificial intelligence (AI)-based) and, where relevant, predictive simulations should be proposed which enable improved analysis of the integrated patient data in combination with clinical insights and expertise to optimise best practice guidelines, support better clinical decision-making and assessment of outcomes for optimised care pathways, bespoke to the patient and the healthcare system.

Applicants should also consider how the proposed solutions could be part of integrated community-based health and social services that optimise independence, quality of life and the wellbeing of the individual, including when relevant behavioural changes, while decreasing the burden on families and carers.

Applicants providing data as part of their applications should include in the proposals evidence that all legal, ethical, and intellectual property permissions are in place to ensure the availability of the data to the consortium.

Opening date: 28 June 2022

Deadline: 20 September 2022 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: HORIZON-JU-RIA HORIZON JU Research and Innovation Actions

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-ju-ihi-2022-01-01

Most Popular Now

Artificial Intelligence: Unexpected Resu…

Artificial intelligence (AI) is on the rise. Until now, AI applications generally have "black box" character: How AI arrives at its results remains hidden. Prof. Dr. Jürgen Bajorath, a cheminformatics...

Printed Robots with Bones, Ligaments, an…

3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been...

AI identifies Non-Smokers at High Risk f…

Using a routine chest X-ray image, an artificial intelligence (AI) tool can identify non-smokers who are at high risk for lung cancer, according to a study being presented next week...

Orchestrating the New World of AI in Hea…

Orion Health's UK and Ireland Customer Conference 2023 focused on the future potential and immediate, practical application of AI to healthcare - and gave delegates a first look at the...

Study Reveals Bias in AI Tools when Diag…

Machine learning algorithms designed to diagnose a common infection that affects women showed a diagnostic bias among ethnic groups, University of Florida researchers found. While artificial intelligence (AI) tools offer...

Researchers Take New AI Approach to Anal…

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue...

Medical AI Tool from UF, NVIDIA gets Hum…

A new artificial intelligence (AI) computer program created by researchers at the University of Florida and NVIDIA can generate doctors' notes so well that two physicians couldn't tell the difference...

Commission Opens Calls to Invest €42 Mil…

Today, the European Commission opened a new set of calls for proposals under the 2023-2024 Work Programmes of the Digital Europe Programme with a focus on advanced digital skills. The calls...

Bayer Championing Advancements in Radiol…

Bayer continues to advance its comprehensive Radiology portfolio with progress in the development pipeline of its investigational contrast agent as well as new innovations in the area of Artificial Intelligence...

MEDICA and COMPAMED: Medical Technology …

13 - 16 November 2023, Düsseldorf, Germany. After four days of business, MEDICA and COMPAMED in Düsseldorf delivered impressive confirmation that they are excellent platforms for the worldwide medical technology business...

AI Predicts Developmental Paths in Prema…

Researchers at UMC Utrecht have developed an AI model to predict long-term outcome in extremely premature babies early in life. The model can identify which infants might face intellectual disability...

AI Paves Way for New Medicines

A team of researchers from LMU, ETH Zurich, and Roche Pharma Research and Early Development (pRED) Basel has used artificial intelligence (AI) to develop an innovative method that predicts the...