Open Call HORIZON-HLTH-2021-TOOL-06-01: Smart Medical Devices and their Surgical Implantation for Use in Resource-Constrained Settings

European CommissionThis topic aims at supporting activities that are enabling or contributing to one or several expected impacts of destination 5 "Unlocking the full potential of new tools, technologies and digital solutions for a healthy society". To that end, proposals under this topic should aim for delivering results that are directed, tailored towards and contributing to all of the following expected outcomes.
  • Medical device developers provide sustainable and affordable smart active implants validated in the operational environment.
  • Medical professionals in resource-constrained clinical settings use sustainable and affordable surgical procedures for smart active implants.
  • Patients have access to sustainable and affordable smart medical devices suitable for minimally invasive surgical implantation through further clinical studies.

Scope

"Smart" technologies, i.e. micro-electronic sensor/actuator systems provide novel functionalities to surgically-implanted active medical devices. "Smart" active implants involve microelectronic components and are placed inside the body of the patient to achieve the desired physiological response. They open up therapeutic avenues for a wide range of medical handicaps, complex chronic conditions and lesions, thanks to their integrated diagnostic capabilities, and may help addressing hitherto unmet medical needs. Challenges involved in the development of these devices include but are not limited to miniaturization, sensor robustness, wireless power supply, etc. Such devices require specific surgical implantation procedures, dependant on the type of device and on the intended use, with the successful surgical implantation and activation of such smart medical implants, being crucial steps for their functioning. The device targeted and its intended use is open for applicants to choose (e.g. orthopaedic, neural, cardiovascular, metabolic, etc.), but should at the start of the proposed work be at a TRL of minimum four and will necessitate appropriate tailored surgical procedures and interventions. Surgical conditions account for approximately 30% of the global burden of disease and have a huge social and economic impact. However, of the 300 million surgical interventions undertaken globally every year only around 6% occur in low-income countries, where a third of the world’s population lives. There is therefore a strong need for high-quality, affordable surgical interventions for implanting "smart" active medical devices suitable for resource-limited or -constrained clinical settings. Resource-constrained settings are clinical environments that are affected by limitations such as lack of medical staff, scarcity of medical equipment or medicines supply, etc. To address this gap, the sustainability of both the medical device and the applied surgical intervention, including the necessary equipment and operating skills, are essential elements. Implantation procedures should be fully compatible with resource-constrained environments and minimally invasive approaches should be favoured. Hence, research and innovation activities should comprise medical device design, regulatory work, clinical stages and developmental iterations, reaching a TRL of at least seven, and involve key medical specialists (e.g. surgeons) and/or other health care professionals, developers, patients and relevant regulatory bodies as appropriate. The work proposed should take into account the new EU legal framework on medical devices with the targeted implants meeting all the essential requirements as defined therein.

Opening date: 22 June 2021

Deadline: 21 September 2021 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: HORIZON-IA HORIZON Innovation Actions

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-hlth-2021-tool-06-01

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...

NHS National Rehabilitation Centre to De…

The new NHS National Rehabilitation Centre will deploy technology to help patients to maintain their independence as they recover from life-changing injuries and illnesses and regain quality of life. Airwave Healthcare...

AI Finds Hundreds of Potential Antibioti…

Snake, scorpion, and spider venom are most frequently associated with poisonous bites, but with the help of artificial intelligence, they might be able to help fight antibiotic resistance, which contributes...

AI Tool Accurately Detects Tumor Locatio…

An AI model trained to detect abnormalities on breast MR images accurately depicted tumor locations and outperformed benchmark models when tested in three different groups, according to a study published...

AI can Accelerate Search for More Effect…

Scientists have used an AI model to reassess the results of a completed clinical trial for an Alzheimer’s disease drug. They found the drug slowed cognitive decline by 46% in...

AI Accurately Classifies Pancreatic Cyst…

Artificial intelligence (AI) models such as ChatGPT are designed to rapidly process data. Using the AI ChatGPT-4 platform to extract and analyze specific data points from the Magnetic Resonance Imaging...