Open Call HORIZON-HLTH-2021-TOOL-06-03: Innovative Tools for Use and Re-Use of Health Data (in Particular of Electronic Health Records and/or Patient Registries)

European CommissionThis topic aims at supporting activities that are enabling or contributing to one or several expected impacts of destination 5 "Unlocking the full potential of new tools, technologies and digital solutions for a healthy society". To that end, proposals under this topic should aim for delivering results that are directed, tailored and contributing to all of the following expected outcomes:
  • Novel solutions improve quality, ensure interoperability and enable re-use of health data, data analytics and metadata from different repositories across countries by health professionals, researchers and health authorities, in compliance with FAIR data management principles as well as national and EU legal and ethical requirements (in particular with regard to personal data protection).
  • Health professionals, researchers and health authorities make effective use of tools enabling them to exploit unstructured and heterogeneous data from different sources to improve the delivery of care and advance health research.
  • Increased use and valorisation of health data by patients, researchers and clinicians thanks to better data portability due to the standardization of meta knowledge (meta data, ontologies and reference repositories) and clinical data, especially health data coming from different clinical services and sites, and/or from multiple countries.
  • Health care professionals use more efficient and cost-effective health care procedures and workflows that contribute to improved disease prevention, early detection/diagnosis and more effective treatment.

Scope

Health data exists in many forms and multiple fragmented repositories; there is still significant room for improvement in the way both structured and unstructured health data is stored, analysed and interpreted. Sharing and analysing data from multiple countries in a safe and legally compliant manner (in particular with regard to personal data protection) remains a challenge. Powerful analytic tools are already helping providers to use structured data in increasingly impactful ways. On the other hand, the heterogeneity, diversity of sources, quality of data and various representations of unstructured data in health care increase the number of challenges as compared to structured data.

Advances in AI and machine learning, however, have the potential to transform the way clinicians, providers and researchers use unstructured data. Furthermore, developing data interoperability standards, trust and harmonization of GDPR’s interpretation across the EU for the sharing and processing of personal health data will support establishing a sound health data culture in view of the European Health Data Space.

Proposals should address all of the following aspects:

  • Developing robust novel solutions compliant with legal requirements (in particular concerning personal data protection) that will improve the quality, interoperability, machine-readability and re-use of health data and metadata in compliance with FAIR data management principles, making these data more accessible to clinicians, researchers and citizens. The focus should be on data in electronic health records (EHRs) and/or patient registries, taking into account the Commission Recommendation on a European Electronic Health Record exchange format[2].
  • Developing innovative natural language processing tools, including computational semantics, ontologies, text mining, associated machine learning and deep learning, to improve accessibility, interoperability, translation, transcription, and analysis of health data (e.g. to predict risks). Tools should extract health information from unstructured data in different clinical and medical sources, and bring that data into EHRs/patient registries in a structured form. The innovative solutions should also address missing data in EHRs and/or patient registries and their related metadata, to reduce bias and improve the quality of conclusions.
  • Developing and piloting AI-powered virtual assistants that will utilise the tools and solutions developed (as mentioned above) in order to demonstrate improved usability of health data for end-users.

Proposals are expected to build on and contribute to existing European and international data standards, specifications and schemas for health data. The use of open standards should be considered and interactions with relevant ongoing research infrastructure efforts are encouraged. Applicants should focus on health data coming from a number of EU Member States and EEA countries, constituting as much as possible a representative sample of the European healthcare landscape, so as to contribute to the work on the creation of the European Health Data Space.

To guarantee their adoption, the developed solutions should be quick and easy to use by researchers and clinicians. Therefore active involvement of end-users from the onset is encouraged. In particular, patient advocacy groups and citizens should be involved to ensure adequate consideration of diverse patient needs, with respect to their gender, ethnicity, age, ability, and socio-economic background, to underpin acceptance by patients and other data subjects. SMEs participation is also encouraged.

The proposals should duly take into account requirements stipulated in the relevant European regulations (Data protection, in vitro diagnostics and medical devices) and must meet appropriate ethical standards.

Opening date: 22 June 2021

Deadline: 21 September 2021 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: HORIZON-RIA HORIZON Research and Innovation Actions

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-hlth-2021-tool-06-03

Most Popular Now

European Artificial Intelligence Act Com…

The European Artificial Intelligence Act (AI Act), the world's first comprehensive regulation on artificial intelligence, enters into force. The AI Act is designed to ensure that AI developed and used...

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

Generative AI can Not yet Reliably Read …

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

AI can Help Rule out Abnormal Pathology …

A commercial artificial intelligence (AI) tool used off-label was effective at excluding pathology and had equal or lower rates of critical misses on chest X-ray than radiologists, according to a...

What Does the EU's Recent AI Act Me…

The European Union's law on artificial intelligence came into force on 1 August. The new AI Act essentially regulates what artificial intelligence can and cannot do in the EU. A...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...