Open Call HORIZON-HLTH-2021-TOOL-06-03: Innovative Tools for Use and Re-Use of Health Data (in Particular of Electronic Health Records and/or Patient Registries)

European CommissionThis topic aims at supporting activities that are enabling or contributing to one or several expected impacts of destination 5 "Unlocking the full potential of new tools, technologies and digital solutions for a healthy society". To that end, proposals under this topic should aim for delivering results that are directed, tailored and contributing to all of the following expected outcomes:
  • Novel solutions improve quality, ensure interoperability and enable re-use of health data, data analytics and metadata from different repositories across countries by health professionals, researchers and health authorities, in compliance with FAIR data management principles as well as national and EU legal and ethical requirements (in particular with regard to personal data protection).
  • Health professionals, researchers and health authorities make effective use of tools enabling them to exploit unstructured and heterogeneous data from different sources to improve the delivery of care and advance health research.
  • Increased use and valorisation of health data by patients, researchers and clinicians thanks to better data portability due to the standardization of meta knowledge (meta data, ontologies and reference repositories) and clinical data, especially health data coming from different clinical services and sites, and/or from multiple countries.
  • Health care professionals use more efficient and cost-effective health care procedures and workflows that contribute to improved disease prevention, early detection/diagnosis and more effective treatment.

Scope

Health data exists in many forms and multiple fragmented repositories; there is still significant room for improvement in the way both structured and unstructured health data is stored, analysed and interpreted. Sharing and analysing data from multiple countries in a safe and legally compliant manner (in particular with regard to personal data protection) remains a challenge. Powerful analytic tools are already helping providers to use structured data in increasingly impactful ways. On the other hand, the heterogeneity, diversity of sources, quality of data and various representations of unstructured data in health care increase the number of challenges as compared to structured data.

Advances in AI and machine learning, however, have the potential to transform the way clinicians, providers and researchers use unstructured data. Furthermore, developing data interoperability standards, trust and harmonization of GDPR’s interpretation across the EU for the sharing and processing of personal health data will support establishing a sound health data culture in view of the European Health Data Space.

Proposals should address all of the following aspects:

  • Developing robust novel solutions compliant with legal requirements (in particular concerning personal data protection) that will improve the quality, interoperability, machine-readability and re-use of health data and metadata in compliance with FAIR data management principles, making these data more accessible to clinicians, researchers and citizens. The focus should be on data in electronic health records (EHRs) and/or patient registries, taking into account the Commission Recommendation on a European Electronic Health Record exchange format[2].
  • Developing innovative natural language processing tools, including computational semantics, ontologies, text mining, associated machine learning and deep learning, to improve accessibility, interoperability, translation, transcription, and analysis of health data (e.g. to predict risks). Tools should extract health information from unstructured data in different clinical and medical sources, and bring that data into EHRs/patient registries in a structured form. The innovative solutions should also address missing data in EHRs and/or patient registries and their related metadata, to reduce bias and improve the quality of conclusions.
  • Developing and piloting AI-powered virtual assistants that will utilise the tools and solutions developed (as mentioned above) in order to demonstrate improved usability of health data for end-users.

Proposals are expected to build on and contribute to existing European and international data standards, specifications and schemas for health data. The use of open standards should be considered and interactions with relevant ongoing research infrastructure efforts are encouraged. Applicants should focus on health data coming from a number of EU Member States and EEA countries, constituting as much as possible a representative sample of the European healthcare landscape, so as to contribute to the work on the creation of the European Health Data Space.

To guarantee their adoption, the developed solutions should be quick and easy to use by researchers and clinicians. Therefore active involvement of end-users from the onset is encouraged. In particular, patient advocacy groups and citizens should be involved to ensure adequate consideration of diverse patient needs, with respect to their gender, ethnicity, age, ability, and socio-economic background, to underpin acceptance by patients and other data subjects. SMEs participation is also encouraged.

The proposals should duly take into account requirements stipulated in the relevant European regulations (Data protection, in vitro diagnostics and medical devices) and must meet appropriate ethical standards.

Opening date: 22 June 2021

Deadline: 21 September 2021 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: HORIZON-RIA HORIZON Research and Innovation Actions

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-hlth-2021-tool-06-03

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...