Open Call SC1-DTH-07-2018: Exploiting the Full Potential of in-Silico Medicine Research for Personalised Diagnostics and Therapies in Cloud-Based Environments

European CommissionThe progress in computer modelling and simulation applied in disease management is a European strength and various Decision Support Systems have been developed for different medical disciplines. While the market is developing today, addressing the need of more precise and personalised diagnostics and treatments, the proposed software tools and platforms often need to further conquer visibility and trust from users and investors to get implemented in the routine clinical practice. The access of researchers to high quality big data and in particular to clinical multi-disciplinary data is crucial for validating the use of new tools and platforms in the right practice context.

Through its new initiatives on digital health and care within the Digital Single Market policy, the European Commission aims at leveraging the potential of big data and high performance computing for the emergence of new personalised prevention and treatments for European citizens. The European Cloud Initiative will facilitate the access of researchers to the newest data managing technologies, High Performance Computing facilities to process data and to a European Open Science Cloud list of ICT services while ensuring the appropriate data safety and protection.

Shared infrastructures, data and services in open cloud-based environments will stimulate the virtual complex experimentations in medicine and the link between researchers and healthcare practitioners, for their common benefit.

Scope

Proposals are expected to develop and validate software tools and devices for diagnostic or treatment based on computational modelling and simulation applied in biology and physiology. The solutions should enable decision making in complex situations and contribute to a more precise and personalised management of diseases in order to reduce the burden of non-communicable diseases, such as cancer.

Computer-based decision making can apply to the choice of drugs, devices or other biomedical products, procedures, interventions, in vitro and in vivo diagnostics methods and tools, or combined diagnostics and treatments. In order to ensure access to large multi-disciplinary high quality data sets and diminish the shortage of relevant data, the teams are expected to use shared infrastructures and e-infrastructures, building on existing capacity and expertise and linking where possible with the European initiatives that manage databases relevant for personal health, such as BBMRI, ELIXIR or EATRIS, as well as with Centres of Excellences for computing applications in the area of biomedicine and bio-molecular research as appropriate. They should demonstrate access to the sufficient and relevant clinical data needed for advanced validations. The work should build on - and contribute to reusable data and computer models. Teams are encouraged to use EOSC services as appropriate and possible.

The Commission considers that proposals requesting a contribution from the EU of between EUR 10 and 15 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts. Expected Impact:

The proposal should provide appropriate indicators to measure its progress and specific impact in the following areas:

  • Better translation of big and multi-disciplinary data into predictors for medical outcome and personalised decision making;
  • New digitised trusted diagnostic and treatment tools, and contributing to digitising clinical workflows;
  • Improved disease management, demonstrated in the specific disease context;
  • Links to other European research infrastructure projects and networks operating in related domains;
  • Contribution to the emergence of a European Data Infrastructure for personalised medicine in the context of the DSM, notably by providing reusable data and computer models for personalised prevention and health treatments;
  • Better data quality, interoperability and standards.

Deadline: 24 April 2018 17:00:00

Deadline Model: single-stage

Type of action: RIA Research and Innovation action

For topic conditions, documents and submission service, please visit:
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sc1-dth-07-2018.html

PS: Find your partners or consortia preparing a project proposal
If you are working on Horizon 2020 research project proposals and you would be interested in a SME partner from Germany, please contact us, we are happy to share our experience, expertise and knowledge. If you need help to identify a potential partner with particular competences, facilities or experience, please join and explore our project, (HEALTH IT) SPACE, at www.healthitspace.eu.

Most Popular Now

AI Predictions for Colorectal Cancer: On…

Colorectal cancer (CRC) ranks second in leading causes of cancer-related deaths globally, according to the WHO. For the first time, researchers from Helmholtz Munich and the University of Technology Dresden...

Combining AI Models Improves Breast Canc…

Combining artificial intelligence (AI) systems for short- and long-term breast cancer risk results in an improved cancer risk assessment, according to a study published in Radiology, a journal of the...

ChatGPT Shows 'Impressive' Acc…

A new study led by investigators from Mass General Brigham has found that ChatGPT was about 72 percent accurate in overall clinical decision making, from coming up with possible diagnoses...

Healthcare Chatbot: Expand Support with …

The Danish eHealth platform, sundhed.dk, has faced a substantial surge in requests from Danish citizens and has swiftly expanded its support and effectively adapt to the ongoing changes in queries due...

WiFi SPARK's Healthcare Business Re…

Leading WiFi provider WiFi SPARK is rebranding its healthcare arm as SPARK Technology Services Limited. The new identity marks the completion of the integration of the former Hospedia bedside unit...

ChatGPT is Debunking Myths on Social Med…

ChatGPT could help to increase vaccine uptake by debunking myths around jab safety, say the authors of a study published in the peer-reviewed journal Human Vaccines and Immunotherapeutics. The researchers asked...

Online AI-Based Test for Parkinson'…

An artificial intelligence (AI) tool developed by researchers at the University of Rochester can help people with Parkinson's disease remotely assess the severity of their symptoms within minutes. A study...

AI Performs Comparably to Human Readers …

Using a standardized assessment, researchers in the UK compared the performance of a commercially available artificial intelligence (AI) algorithm with human readers of screening mammograms. Results of their findings were...

Siemens Healthineers Expands Production …

Siemens Healthineers is expanding its site in Rudolstadt, Germany. By mid 2024, a new manufacturing building will be built on the site. The new manufacturing plant will produce electron accelerators...

More Cases of Breast Cancer Detected wit…

One radiologist supported by AI detected more cases of breast cancer in screening mammography than two radiologists working together, reports the ScreenTrustCAD study from Karolinska Institutet in The Lancet Digital...

MEDICA 2023 + COMPAMED 2023: "Where…

13 - 16 November 2023, Düsseldorf, Germany. The medical technology market is in worldwide motion and the signs ahead of MEDICA 2023 and COMPAMED 2023 in Düsseldorf as the internationally leading...

Smartphone Technology Expected to Advanc…

Since the 1980s, we have known that neurological soft signs (NSS) can distinguish people with schizophrenia from psychiatrically healthy individuals. NSS are subtle neurological impairments that principally manifest as decreased...