Roche Improves Speed and Accuracy of Non-Small Cell Lung Cancer Diagnosis with Launch of Automated Digital Pathology Algorithm

RocheRoche (SIX: RO, ROG; OTCQX: RHHBY) today announced the CE-IVD launch of its automated digital pathology algorithm, the uPath PD-L1 (SP263) image analysis for non-small cell lung cancer (NSCLC). The algorithm provides pathologists with automated assessments of scanned slide images that are objective and reproducible and have the potential to aid diagnosis and, ultimately, targeted treatment options for patients.

Validated on the VENTANA PD-L1 (SP263) Assay, the algorithm is ready-to-use and integrated within the Roche uPath enterprise software, a universal digital platform for case management, collaboration and reporting. This algorithm will help pathologists to quickly determine whether tumours are positive for the PD-L1 biomarker, highlighting positively and negatively stained tumour cells with a clear visual overlay for easy reference. Patients with tumours that are positive for the PD-L1 biomarker may be eligible for targeted treatment.

"Improving diagnostic consistency and certainty is crucial in providing faster, higher-quality and more accurate diagnoses to cancer patients," said Thomas Schinecker, CEO, Roche Diagnostics. "Our uPath PD-L1 (SP263) image analysis for non-small cell lung cancer is the first next-generation CE-IVD PD-L1 algorithm to the clinical market. It expands on our growing digital pathology suite for VENTANA assays that aid physicians in providing the most accurate treatment decisions for patients with the most common type of lung cancer."

The algorithm's whole-slide automated analysis uses artificial intelligence to provide, with one-click, an actionable assessment of the scanned slide images that is objective and reproducible. The uPath PD-L1 (SP263) image analysis (NSCLC) algorithm for digital pathology is for use on uPath enterprise software.

About uPath image analysis algorithm suite

The uPath image analysis algorithm suite for pathology decision support offers ready-to-use image analysis tools, providing fast, consistent and automated analysis so that pathologists can quickly, accurately and confidently assess immunohistochemistry/in situ hybridization and hematoxylin and eosin-stained slides. This launch of uPath PD-L1 (SP263) image analysis for non-small cell lung cancer follows the January 2019 release of the Roche uPath enterprise software. All algorithms in the suite for uPath software will provide image analysis of VENTANA DP 200 scanned slide images stained with a Roche tissue assay. Together, Roche is delivering a new foundation of its digital pathology solution which will enable the development of artificial intelligence-based image analysis algorithms that can provide pathologists more tools to improve efficiency and precision.

Roche is delivering the end-to-end digital pathology solution from tissue staining to producing high-quality digital images that can be reliably assessed using automated clinical image analysis algorithms. Roche minimizes the variables that can impact analysis, and it is this end-to-end development that produces the quality results customers can depend on for making clinical decisions. With the acceleration of immunotherapy and the development of more complex assays, Roche is moving these traditionally research-oriented tools into routine clinical practice.

About the uPath PD-L1 (SP263) image analysis for NSCLC algorithm

The uPath PD-L1 (SP263) image analysis for NSCLC algorithm is intended for use as an aid to the pathologist in the detection and semi-quantitative measurement of PD-L1 protein in formalin-fixed, paraffin-embedded NSCLC tissue. When used with the CE-marked VENTANA PD-L1 (SP263) Assay, it is indicated for use as an aid in identifying patients for treatment with therapies with the ≥ 50% PD-L1 TC positivity cutoff in accordance with the approved therapeutic product labeling. It is intended for in vitro diagnostic use as an aid to the pathologist in the display, detection, counting, review and classification of tissues and cells of clinical interest based on particular morphology, color, intensity, size, pattern and shape.

About non-small cell lung cancer

Lung cancer is the leading cause of cancer death globally.(1) Each year, 1.76 million people die as a result of the disease, translating into more than 4,800 deaths worldwide every day.(1) Lung cancer can be broadly divided into two major types: NSCLC and small cell lung cancer. NSCLC is the most prevalent type, accounting for about 85% of all cases.(2) NSCLC comprises non-squamous and squamous-cell lung cancer, the squamous form of which is characterised by flat cells covering the airway surface when viewed under a microscope.(2)

About Roche

Roche is a global pioneer in pharmaceuticals and diagnostics focused on advancing science to improve people's lives. The combined strengths of pharmaceuticals and diagnostics under one roof have made Roche the leader in personalised healthcare - a strategy that aims to fit the right treatment to each patient in the best way possible.

Roche is the world's largest biotech company, with truly differentiated medicines in oncology, immunology, infectious diseases, ophthalmology and diseases of the central nervous system. Roche is also the world leader in in vitro diagnostics and tissue-based cancer diagnostics, and a frontrunner in diabetes management.

Founded in 1896, Roche continues to search for better ways to prevent, diagnose and treat diseases and make a sustainable contribution to society. The company also aims to improve patient access to medical innovations by working with all relevant stakeholders. More than thirty medicines developed by Roche are included in the World Health Organization Model Lists of Essential Medicines, among them life-saving antibiotics, antimalarials and cancer medicines. Moreover, for the eleventh consecutive year, Roche has been recognised as one of the most sustainable companies in the Pharmaceuticals Industry by the Dow Jones Sustainability Indices (DJSI).

The Roche Group, headquartered in Basel, Switzerland, is active in over 100 countries and in 2019 employed about 98,000 people worldwide. In 2019, Roche invested CHF 11.7 billion in R&D and posted sales of CHF 61.5 billion. Genentech, in the United States, is a wholly owned member of the Roche Group. Roche is the majority shareholder in Chugai Pharmaceutical, Japan.

1. World Health Organization. GLOBOCAN 2018; Lung Cancer: Estimated cancer incidence, mortality and prevalence worldwide. Available from: http://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf. Accessed November 2019.
2. American Cancer Society. What Is Non-Small Cell Lung Cancer? [Internet]: Available from: https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html. Accessed November 2019.

Most Popular Now

Siemens Healthineers Uses Artificial Int…

Siemens Healthineers introduces Ysio X.pree(1), the world's first intelligent X-ray system with integrated AI for optimizing the daily routine of image acquisition in radiography. To assist radiologists with the subsequent...

FDA Permits Marketing of First Game-Base…

The U.S. Food and Drug Administration (FDA) permitted marketing of the first game-based digital therapeutic device to improve attention function in children with attention deficit hyperactivity disorder (ADHD). The prescription-only...

Digital Mental Health Interventions Have…

Treating anxiety and depression with digital mental health therapy has a significant and long-term benefit for recovery, new research amongst NHS service users suggests. The research was undertaken by SilverCloud...

HealthTunes Launches iOS App to Deliver …

HealthTunes has announceed the launch of the iOS App specifically created to help alleviate the mental health suffering of frontline healthcare workers. After months of fighting the pandemic, many frontline...

Philips Announces Collaboration with Ame…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has once again joined forces with the American Telemedicine Association (ATA) to help further the...

Roche Improves Speed and Accuracy of Non…

Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced the CE-IVD launch of its automated digital pathology algorithm, the uPath PD-L1 (SP263) image analysis for non-small cell lung cancer (NSCLC). The...

Successful Debut for DMEA sparks

16 - 18 June 2020, Berlin, Germany. DMEA sparks opened, featuring a wide range of topics. Federal Minister of Health Jens Spahn kicked off events. In his interview he focused on...

Brazilian Scientists Develop COVID-19 Ac…

Researchers at São Paulo State University (UNESP) in Araçatuba, Brazil, have developed a computational tool that acts like a "COVID-19 accelerometer," plotting in real time the rate at which growth...

Wearable Injectors and Connected Devices…

7 - 8 October 2020, London, United Kingdom. The global wearable devices market size is expected to reach a value of $62.82 billion USD by 2025 with time dependent delivery, improved...

Siemens Healthineers Offers Flexible Tel…

With its teamplay myCare Companion software, the company is bringing a new and flexible telemedicine solution to the market that enables remote care for patients with chronic diseases. The teamplay...

Andrea Fiumicelli Appointed as a CEO of …

Dedalus Group, leader in Europe and one of the world's leading players in clinical and healthcare information systems supporting clinical professionals and healthcare facilities thanks to a wide portfolio of...

Oracle Unveils Clinical One Data Collect…

Electronic Data Capture (EDC) is no longer sufficient for today’s clinical trials, which are incorporating more virtual components and becoming more decentralized. While traditional EDC systems capture data from forms...